Investigating the impacts of the Dual Carbon Targets on energy and carbon flows in China

IF 9 1区 工程技术 Q1 ENERGY & FUELS Energy Pub Date : 2024-11-10 DOI:10.1016/j.energy.2024.133778
Peng-Tao Wang , Qing-Chuang Xu , Fei-Yin Wang , Mao Xu
{"title":"Investigating the impacts of the Dual Carbon Targets on energy and carbon flows in China","authors":"Peng-Tao Wang ,&nbsp;Qing-Chuang Xu ,&nbsp;Fei-Yin Wang ,&nbsp;Mao Xu","doi":"10.1016/j.energy.2024.133778","DOIUrl":null,"url":null,"abstract":"<div><div>As the world's largest carbon emitter, China has committed to ambitious “Dual Carbon Targets” to address climate change. To investigate the impact of the Dual Carbon Targets on energy consumption and carbon dioxide (CO<sub>2</sub>) emissions, CO<sub>2</sub> emissions were calculated, and Sankey diagrams of energy and CO<sub>2</sub> flows for 2018–2022 were drawn based on the latest energy statistics. This study finds that China's primary energy supply was 5.429 Gtce, with terminal energy consumption at 3.801 Gtce in 2022. CO<sub>2</sub> emissions reached 12.01 Gt, marking a 12.24 % increase since 2018. Emission intensity varies regionally, being higher in the north and lower in the south, with a national average of 0.1 kg/CNY. Coal continues to dominate energy consumption at 64 %, though its share of emissions is declining, particularly in transportation and residential sectors. By 2060, electricity is expected to become the primary energy source, significantly lowering carbon emissions, with Carbon Capture, Utilization, and Storage technologies playing a crucial role in achieving the targets. This analysis provides critical insights into China's transition to a low-carbon economy, serving as a valuable resource for policymakers to optimize the energy structure and meet environmental goals.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133778"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224035564","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As the world's largest carbon emitter, China has committed to ambitious “Dual Carbon Targets” to address climate change. To investigate the impact of the Dual Carbon Targets on energy consumption and carbon dioxide (CO2) emissions, CO2 emissions were calculated, and Sankey diagrams of energy and CO2 flows for 2018–2022 were drawn based on the latest energy statistics. This study finds that China's primary energy supply was 5.429 Gtce, with terminal energy consumption at 3.801 Gtce in 2022. CO2 emissions reached 12.01 Gt, marking a 12.24 % increase since 2018. Emission intensity varies regionally, being higher in the north and lower in the south, with a national average of 0.1 kg/CNY. Coal continues to dominate energy consumption at 64 %, though its share of emissions is declining, particularly in transportation and residential sectors. By 2060, electricity is expected to become the primary energy source, significantly lowering carbon emissions, with Carbon Capture, Utilization, and Storage technologies playing a crucial role in achieving the targets. This analysis provides critical insights into China's transition to a low-carbon economy, serving as a valuable resource for policymakers to optimize the energy structure and meet environmental goals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调查 "双碳目标 "对中国能源和碳流动的影响
作为世界上最大的碳排放国,中国承诺实现雄心勃勃的 "双碳目标",以应对气候变化。为了研究 "双碳目标 "对能源消耗和二氧化碳(CO2)排放的影响,我们计算了二氧化碳排放量,并根据最新的能源统计数据绘制了 2018-2022 年能源和二氧化碳流量的桑基图。研究发现,2022 年中国一次能源供应为 5.429 Gtce,终端能源消费为 3.801 Gtce。二氧化碳排放量达到 12.01 Gt,自 2018 年以来增长了 12.24%。排放强度因地区而异,北部较高,南部较低,全国平均为 0.1 kg/CNY。煤炭仍占能源消耗的 64%,但其排放份额正在下降,尤其是在交通和居民部门。到 2060 年,电力有望成为主要能源,从而大幅降低碳排放量,而碳捕集、利用和封存技术将在实现目标的过程中发挥关键作用。该分析为中国向低碳经济转型提供了重要见解,是决策者优化能源结构、实现环保目标的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
期刊最新文献
Exploration on deep pulverized coal activation and ultra-low NOx emission strategies with novel purifying-combustion technology Collaborative strategy towards a resilient urban energy system: Evidence from a tripartite evolutionary game model Household, sociodemographic, building and land cover factors affecting residential summer electricity consumption: A systematic statistical study in Phoenix, AZ Economic benefits for the metallurgical industry from co-combusting pyrolysis gas from waste Assessment of flexible coal power and battery energy storage system in supporting renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1