Shaokun He , BinBin Li , Qianxun Li , Hezhen Zheng , Yingjian Chen
{"title":"Refining hydropower operation by dynamic control of cascade reservoir water levels with flood season segmentation","authors":"Shaokun He , BinBin Li , Qianxun Li , Hezhen Zheng , Yingjian Chen","doi":"10.1016/j.energy.2024.134156","DOIUrl":null,"url":null,"abstract":"<div><div>Flood limited water level (FLWL) is a critical factor in managing reservoir operations throughout the flood season. Given the growing need for renewable hydropower, there is an urgent need for new FLWL-centered policies to stimulate hydropower development. This study proposes a dynamic control framework for FLWL of cascade reservoirs based on the segmentation of the flood season (i.e., pre-flood, main flood and post-flood sub-seasons). Specifically, the dynamic control of reservoir water levels during the pre-flood and main flood sub-seasons is around seasonal FLWLs to balance flood control risk (<em>FCR</em>) and total hydropower generation (<em>THG</em>), while dynamic control of impoundment operation is implemented during the post-flood sub-season. A five-reservoir system in the Yangtze River basin was selected as a case study. The results illustrate that (1) our developed framework can offer decision-makers a balanced trade-off between <em>FCR</em> and <em>THG</em>; and (2) the optimal <em>THG</em> solution achieve a 3.16 % increase in hydropower generation with little increase in <em>FCR</em> compared to standard operating policy, while also delivering enhanced performance across other operational metrics, including impoundment efficiency. These insights are valuable for decision-makers in the Yangtze River basin and highlight the potential of dynamic control strategies for high-capacity reservoirs in other regions.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"314 ","pages":"Article 134156"},"PeriodicalIF":9.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224039343","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Flood limited water level (FLWL) is a critical factor in managing reservoir operations throughout the flood season. Given the growing need for renewable hydropower, there is an urgent need for new FLWL-centered policies to stimulate hydropower development. This study proposes a dynamic control framework for FLWL of cascade reservoirs based on the segmentation of the flood season (i.e., pre-flood, main flood and post-flood sub-seasons). Specifically, the dynamic control of reservoir water levels during the pre-flood and main flood sub-seasons is around seasonal FLWLs to balance flood control risk (FCR) and total hydropower generation (THG), while dynamic control of impoundment operation is implemented during the post-flood sub-season. A five-reservoir system in the Yangtze River basin was selected as a case study. The results illustrate that (1) our developed framework can offer decision-makers a balanced trade-off between FCR and THG; and (2) the optimal THG solution achieve a 3.16 % increase in hydropower generation with little increase in FCR compared to standard operating policy, while also delivering enhanced performance across other operational metrics, including impoundment efficiency. These insights are valuable for decision-makers in the Yangtze River basin and highlight the potential of dynamic control strategies for high-capacity reservoirs in other regions.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.