Effect of hydraulic configuration on lettuce growth in hydroponic bed using Deep water culture technique (DWC)

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Computers and Electronics in Agriculture Pub Date : 2024-11-14 DOI:10.1016/j.compag.2024.109634
Carlos J. Cortés , Nelson O. Moraga , Constanza Jana , Germán E. Merino
{"title":"Effect of hydraulic configuration on lettuce growth in hydroponic bed using Deep water culture technique (DWC)","authors":"Carlos J. Cortés ,&nbsp;Nelson O. Moraga ,&nbsp;Constanza Jana ,&nbsp;Germán E. Merino","doi":"10.1016/j.compag.2024.109634","DOIUrl":null,"url":null,"abstract":"<div><div>Experiments and computational modeling were developed to determine the effect of different types of hydraulic configurations on water quality variables to improve growth of lettuce in hydroponic beds. The variants in the hydraulic configurations consider water recirculation in hydroponic modules using Deep Water Culture technique (DWC), for continuous (CWF) and pulsatile water flow (PWF) using either one or three water flow inlets (TWF). These data were used to generate fluid mechanics and heat transfer models for the described hydraulic configurations to assess the effect of the hydraulic configuration on lettuce growth. The results obtained from the mathematical model by the finite volume method allowed to explain the influence of water flow and temperature on the rate of growing for lettuce during summer and autumn in the southern hemisphere. The main findings obtained from the hybrid numerical – experimental model to achieve high lettuce yield were that the number of water inlets has an effect on influenced nutrient transport and water quality variation, where the variant with three water inlets (TWF), and the climatic condition for autumn achieve better plant growth performance than summer. Computational modelling of fluid mechanics and heat transfer allowed to predict the variation of water quality variables in DWC bed, being a suitable technique with a high potential for achieving new accurate agriculture standards.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109634"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010251","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Experiments and computational modeling were developed to determine the effect of different types of hydraulic configurations on water quality variables to improve growth of lettuce in hydroponic beds. The variants in the hydraulic configurations consider water recirculation in hydroponic modules using Deep Water Culture technique (DWC), for continuous (CWF) and pulsatile water flow (PWF) using either one or three water flow inlets (TWF). These data were used to generate fluid mechanics and heat transfer models for the described hydraulic configurations to assess the effect of the hydraulic configuration on lettuce growth. The results obtained from the mathematical model by the finite volume method allowed to explain the influence of water flow and temperature on the rate of growing for lettuce during summer and autumn in the southern hemisphere. The main findings obtained from the hybrid numerical – experimental model to achieve high lettuce yield were that the number of water inlets has an effect on influenced nutrient transport and water quality variation, where the variant with three water inlets (TWF), and the climatic condition for autumn achieve better plant growth performance than summer. Computational modelling of fluid mechanics and heat transfer allowed to predict the variation of water quality variables in DWC bed, being a suitable technique with a high potential for achieving new accurate agriculture standards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水力配置对采用深水栽培技术(DWC)的水培床中生菜生长的影响
通过实验和计算建模,确定了不同类型的水力配置对水质变量的影响,以改善水培床中莴苣的生长。水力配置的变体考虑了使用深水栽培技术(DWC)的水培模块中的水再循环,以及使用一个或三个水流入口(TWF)的连续水流(CWF)和脉动水流(PWF)。这些数据用于生成所述水力配置的流体力学和传热模型,以评估水力配置对莴苣生长的影响。有限体积法数学模型得出的结果可以解释南半球夏季和秋季水流和温度对莴苣生长速度的影响。为实现生菜高产而建立的数值-实验混合模型得出的主要结论是,进水口数量对养分输送和水质变化有影响,其中有三个进水口的变体(TWF)和秋季气候条件下的植物生长表现优于夏季。流体力学和热传导的计算模型可以预测 DWC 床中水质变量的变化,是一项非常适合的技术,在实现新的精确农业标准方面具有很大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
期刊最新文献
Counting wheat heads using a simulation model Optimization and testing of a mechanical roller seeder based on DEM-MBD rice potting tray Development of plant phenotyping system using Pan Tilt Zoom camera and verification of its validity An IoT-based data analysis system: A case study on tomato cultivation under different irrigation regimes Pushing the boundaries of aphid detection: An investigation into mmWaveRadar and machine learning synergy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1