Armando Lopes de Brito Filho , Franciele Morlin Carneiro , Vinicius dos Santos Carreira , Danilo Tedesco , Jarlyson Brunno Costa Souza , Marcelo Rodrigues Barbosa Júnior , Rouverson Pereira da Silva
{"title":"Deep convolutional networks based on lightweight YOLOv8 to detect and estimate peanut losses from images in post-harvesting environments","authors":"Armando Lopes de Brito Filho , Franciele Morlin Carneiro , Vinicius dos Santos Carreira , Danilo Tedesco , Jarlyson Brunno Costa Souza , Marcelo Rodrigues Barbosa Júnior , Rouverson Pereira da Silva","doi":"10.1016/j.compag.2025.110282","DOIUrl":null,"url":null,"abstract":"<div><div>Peanut losses detection is key to monitor operational quality during mechanical harvesting. Current manual assessments faces practical limitations in the field, as they tend to be exhaustive, time-consuming, and susceptible to errors, especially after long work periods. Therefore, the main objective of this study was to develop an automated image processing framework to detect, count, and estimate peanut pod losses during the harvesting operation. We proposed a robust approach encompassing different environmental conditions and training detection algorithms, specifically based on lightweight YOLOv8 architecture, with images acquired with a mobile smartphone at six different times of the day (10 a.m., 11 a.m., 1 p.m., 2 p.m., 3 p.m., and 4 p.m.). The experimental results showed that detecting two-seed peanut pods was more effective than one-seed pods, with higher precision, recall, and mAP50 values. The best results for image acquisition were between 10 a.m. and 2 p.m. The study also compared manual and automated counting methods, revealing that the best scenarios for counting achieved an R<sup>2</sup> above 0.80. Furthermore, georeferenced maps of peanut losses revealed significant spatial variability, providing critical insights for targeted interventions. These findings demonstrate the potential to enhance mechanized harvesting efficiency and lay the groundwork for future integration into fully automated systems. By incorporating this method into harvesting machinery, real-time monitoring and accurate loss quantification can be achieved, substantially reducing the need for labor-intensive manual assessments.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"234 ","pages":"Article 110282"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925003886","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Peanut losses detection is key to monitor operational quality during mechanical harvesting. Current manual assessments faces practical limitations in the field, as they tend to be exhaustive, time-consuming, and susceptible to errors, especially after long work periods. Therefore, the main objective of this study was to develop an automated image processing framework to detect, count, and estimate peanut pod losses during the harvesting operation. We proposed a robust approach encompassing different environmental conditions and training detection algorithms, specifically based on lightweight YOLOv8 architecture, with images acquired with a mobile smartphone at six different times of the day (10 a.m., 11 a.m., 1 p.m., 2 p.m., 3 p.m., and 4 p.m.). The experimental results showed that detecting two-seed peanut pods was more effective than one-seed pods, with higher precision, recall, and mAP50 values. The best results for image acquisition were between 10 a.m. and 2 p.m. The study also compared manual and automated counting methods, revealing that the best scenarios for counting achieved an R2 above 0.80. Furthermore, georeferenced maps of peanut losses revealed significant spatial variability, providing critical insights for targeted interventions. These findings demonstrate the potential to enhance mechanized harvesting efficiency and lay the groundwork for future integration into fully automated systems. By incorporating this method into harvesting machinery, real-time monitoring and accurate loss quantification can be achieved, substantially reducing the need for labor-intensive manual assessments.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.