Design and optimization of a high-speed maize seed guiding device based on DEM-CFD coupling method

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Computers and Electronics in Agriculture Pub Date : 2024-11-07 DOI:10.1016/j.compag.2024.109604
Hongsheng Li, Li Yang, Dongxing Zhang, Cui Tao, Xiantao He, Chunji Xie, Chuan Li, Zhaohui Du, Tianpu Xiao, Zhimin Li, Haoyu Wang
{"title":"Design and optimization of a high-speed maize seed guiding device based on DEM-CFD coupling method","authors":"Hongsheng Li,&nbsp;Li Yang,&nbsp;Dongxing Zhang,&nbsp;Cui Tao,&nbsp;Xiantao He,&nbsp;Chunji Xie,&nbsp;Chuan Li,&nbsp;Zhaohui Du,&nbsp;Tianpu Xiao,&nbsp;Zhimin Li,&nbsp;Haoyu Wang","doi":"10.1016/j.compag.2024.109604","DOIUrl":null,"url":null,"abstract":"<div><div>This study designs a pneumatic seed delivery system for a high-speed corn planter based on the Venturi effect, aimed at improving seeding uniformity and efficiency. By utilizing an external blower to generate airflow, the seeds are accelerated within the seed tube, reducing collisions between seeds and achieving stable seed transport. The research adopts a gas–solid two-phase method to explore the effects of airflow rate and pressure on seed acceleration and delivery, revealing the principles of gas dynamics in seed transportation. DEM-CFD simulation technology, which integrates Discrete Element Method and Computational Fluid Dynamics, is employed to more accurately simulate the physical processes within the granular-fluid system, ensuring rapid acceleration and stable transport of seeds. Through response surface methodology (RSM), the structural parameters of the seed tube were optimized, identifying the main factors and optimal levels influencing seed delivery performance. Experimental results demonstrate that the newly designed seed tube significantly enhances seed movement speed and seeding uniformity under high-speed seeding conditions, confirming its potential application in high-precision planting.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109604"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924009955","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study designs a pneumatic seed delivery system for a high-speed corn planter based on the Venturi effect, aimed at improving seeding uniformity and efficiency. By utilizing an external blower to generate airflow, the seeds are accelerated within the seed tube, reducing collisions between seeds and achieving stable seed transport. The research adopts a gas–solid two-phase method to explore the effects of airflow rate and pressure on seed acceleration and delivery, revealing the principles of gas dynamics in seed transportation. DEM-CFD simulation technology, which integrates Discrete Element Method and Computational Fluid Dynamics, is employed to more accurately simulate the physical processes within the granular-fluid system, ensuring rapid acceleration and stable transport of seeds. Through response surface methodology (RSM), the structural parameters of the seed tube were optimized, identifying the main factors and optimal levels influencing seed delivery performance. Experimental results demonstrate that the newly designed seed tube significantly enhances seed movement speed and seeding uniformity under high-speed seeding conditions, confirming its potential application in high-precision planting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 DEM-CFD 耦合方法的玉米种子高速导向装置的设计与优化
本研究基于文丘里效应为高速玉米播种机设计了一种气动种子输送系统,旨在提高播种的均匀性和效率。通过利用外部鼓风机产生气流,种子在输种管内被加速,减少了种子之间的碰撞,实现了稳定的种子输送。研究采用气固两相法探讨气流速率和压力对种子加速和输送的影响,揭示了种子输送过程中的气体动力学原理。采用离散元法和计算流体动力学相结合的 DEM-CFD 模拟技术,更精确地模拟颗粒-流体系统内的物理过程,确保种子的快速加速和稳定输送。通过响应面方法(RSM),对种子管的结构参数进行了优化,确定了影响种子输送性能的主要因素和最佳水平。实验结果表明,在高速播种条件下,新设计的输种管能显著提高种子移动速度和播种均匀性,证实了其在高精度播种中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
期刊最新文献
Optimization and testing of a mechanical roller seeder based on DEM-MBD rice potting tray Development of plant phenotyping system using Pan Tilt Zoom camera and verification of its validity Human robot interaction for agricultural Tele-Operation, using virtual Reality: A feasibility study Corrigendum to “A chlorophyll-constrained semi-empirical model for estimating leaf area index using a red-edge vegetation index” [Comput. Electron. Agric. 220 (2024) 108891] Design and experiment of monitoring system for feed rate on sugarcane chopper harvester
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1