Érica Souza Gomes , Gustavo Roberto Fonseca de Oliveira , Arthur Almeida Rodrigues , Camila Graziela Corrêa , Eduardo de Almeida , Hudson Wallace Pereira de Carvalho , Valter Arthur , Edvaldo Aparecido Amaral da Silva , Arthur I. Novikov , Clíssia Barboza Mastrangelo
{"title":"Ultrasound technology supplements zinc in soybean seeds and increases the photosynthetic efficiency of seedlings","authors":"Érica Souza Gomes , Gustavo Roberto Fonseca de Oliveira , Arthur Almeida Rodrigues , Camila Graziela Corrêa , Eduardo de Almeida , Hudson Wallace Pereira de Carvalho , Valter Arthur , Edvaldo Aparecido Amaral da Silva , Arthur I. Novikov , Clíssia Barboza Mastrangelo","doi":"10.1016/j.compag.2024.109619","DOIUrl":null,"url":null,"abstract":"<div><div>Strategies to increase the concentration of essential micronutrients for the plant cycle have made a remarkable contribution to agriculture. Ultrasonic waves have the potential to increase cell wall permeability and enhance the chemical composition of seed tissues. In this context, the aim of this study was to verify if it is possible to increase the zinc (Zn) supplementation of soybean seeds through their controlled exposure to ultrasonic waves with improvements in the photosynthetic efficiency (Fv/Fm) of the resulting seedlings. Initially, we investigated the impact of ultrasonic waves on the physical, physiological and spectral parameters of soybean seeds. Next, the seeds were treated with Zn and analyzed by X-ray fluorescence spectroscopy to better understand the kinetics of Zn uptake. Finally, we evaluated the germination, vigor, pigments and photosynthetic performance of seedlings. The main results showed that ultrasound modifies the structure of the seed coat without interfering with the dynamics of water absorption and the germination capacity of the seeds. The changes promoted by the technology favor Zn supplementation of more than 100 % in the seeds. In addition, the resulting seedlings show Fv/Fm values 92.7 % higher than the control, and an increase in chlorophyll fluorescence, initial fluorescence, and anthocyanin. We show that ultrasonic wave technology combined with Zn treatment improves the performance of soybean seeds, producing seedlings with superior photosynthetic efficiency.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109619"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816992401010X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Strategies to increase the concentration of essential micronutrients for the plant cycle have made a remarkable contribution to agriculture. Ultrasonic waves have the potential to increase cell wall permeability and enhance the chemical composition of seed tissues. In this context, the aim of this study was to verify if it is possible to increase the zinc (Zn) supplementation of soybean seeds through their controlled exposure to ultrasonic waves with improvements in the photosynthetic efficiency (Fv/Fm) of the resulting seedlings. Initially, we investigated the impact of ultrasonic waves on the physical, physiological and spectral parameters of soybean seeds. Next, the seeds were treated with Zn and analyzed by X-ray fluorescence spectroscopy to better understand the kinetics of Zn uptake. Finally, we evaluated the germination, vigor, pigments and photosynthetic performance of seedlings. The main results showed that ultrasound modifies the structure of the seed coat without interfering with the dynamics of water absorption and the germination capacity of the seeds. The changes promoted by the technology favor Zn supplementation of more than 100 % in the seeds. In addition, the resulting seedlings show Fv/Fm values 92.7 % higher than the control, and an increase in chlorophyll fluorescence, initial fluorescence, and anthocyanin. We show that ultrasonic wave technology combined with Zn treatment improves the performance of soybean seeds, producing seedlings with superior photosynthetic efficiency.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.