Reduced sampling intensity through key sampling site selection for optimal characterization of riverine fish communities by eDNA metabarcoding

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecological Indicators Pub Date : 2024-11-08 DOI:10.1016/j.ecolind.2024.112807
Charlotte Van Driessche , Teun Everts , Sabrina Neyrinck , Io Deflem , Dries Bonte , Rein Brys
{"title":"Reduced sampling intensity through key sampling site selection for optimal characterization of riverine fish communities by eDNA metabarcoding","authors":"Charlotte Van Driessche ,&nbsp;Teun Everts ,&nbsp;Sabrina Neyrinck ,&nbsp;Io Deflem ,&nbsp;Dries Bonte ,&nbsp;Rein Brys","doi":"10.1016/j.ecolind.2024.112807","DOIUrl":null,"url":null,"abstract":"<div><div>Effective conservation management of river systems requires a comprehensive understanding of local and regional biodiversity, necessitating accurate characterization of species communities. Environmental DNA (eDNA) metabarcoding has emerged as a pivotal tool for assessing aquatic organisms, especially fish communities. However, optimal sampling resolution and site positioning to obtain robust fish diversity indices across heterogeneous river systems remain inadequately understood. This study empirically evaluates the optimal number of eDNA samples needed to accurately capture diversity both locally and stream-wide across three distinct river systems, comparing eDNA metabarcoding results to traditional electrofishing data. Habitat and landscape factors were characterized to interpret the localisation of key sampling sites contributing most to the overall species richness. We detected 30 fish species via eDNA metabarcoding, compared to 28 species by electrofishing, with eDNA requiring fewer sampling sites per river system. To reach ≥ 95 % of the estimated species richness, eDNA analyses required between one and nine sites across three river systems spanning ten kilometres each. In the most diverse river, a single eDNA sampling site even achieved a higher species richness (n = 20 species) compared to the nine required sites to reach ≥ 95 % of the estimated species richness via electrofishing (n = 9 species). To account for eDNA particle dilution and degradation over larger distances (&gt;1 km), sampling at both upstream and downstream sites may be crucial, with strategic site selection further refined by factors like adjacent stream inflows, substrate type, and river discharge rate, all of which influence species-specific habitat occupancy. On a smaller scale, the location of key sampling sites only moderately differs within 100-meter transects therewith informing on the precise placement of those sampling sites. Our work highlights the robustness and cost-effectiveness of eDNA analyses for riverine biodiversity assessment, demonstrating strong potential for enhancing various conservation practices.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112807"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24012640","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Effective conservation management of river systems requires a comprehensive understanding of local and regional biodiversity, necessitating accurate characterization of species communities. Environmental DNA (eDNA) metabarcoding has emerged as a pivotal tool for assessing aquatic organisms, especially fish communities. However, optimal sampling resolution and site positioning to obtain robust fish diversity indices across heterogeneous river systems remain inadequately understood. This study empirically evaluates the optimal number of eDNA samples needed to accurately capture diversity both locally and stream-wide across three distinct river systems, comparing eDNA metabarcoding results to traditional electrofishing data. Habitat and landscape factors were characterized to interpret the localisation of key sampling sites contributing most to the overall species richness. We detected 30 fish species via eDNA metabarcoding, compared to 28 species by electrofishing, with eDNA requiring fewer sampling sites per river system. To reach ≥ 95 % of the estimated species richness, eDNA analyses required between one and nine sites across three river systems spanning ten kilometres each. In the most diverse river, a single eDNA sampling site even achieved a higher species richness (n = 20 species) compared to the nine required sites to reach ≥ 95 % of the estimated species richness via electrofishing (n = 9 species). To account for eDNA particle dilution and degradation over larger distances (>1 km), sampling at both upstream and downstream sites may be crucial, with strategic site selection further refined by factors like adjacent stream inflows, substrate type, and river discharge rate, all of which influence species-specific habitat occupancy. On a smaller scale, the location of key sampling sites only moderately differs within 100-meter transects therewith informing on the precise placement of those sampling sites. Our work highlights the robustness and cost-effectiveness of eDNA analyses for riverine biodiversity assessment, demonstrating strong potential for enhancing various conservation practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过关键采样点的选择降低采样强度,利用 eDNA 代谢编码优化河流鱼类群落的特征描述
要对河流系统进行有效的保护管理,就必须全面了解当地和区域的生物多样性,这就要求对物种群落进行准确的描述。环境 DNA(eDNA)代谢编码已成为评估水生生物,尤其是鱼类群落的重要工具。然而,人们对在不同河流系统中获得可靠的鱼类多样性指数的最佳取样分辨率和地点定位仍缺乏足够的了解。本研究根据经验评估了在三个不同河流系统中准确捕捉局部和整个河流多样性所需的最佳 eDNA 样本数量,并将 eDNA 代谢标码结果与传统电鱼数据进行了比较。对生境和景观因素进行了描述,以解释对总体物种丰富度贡献最大的关键采样点的定位。我们通过 eDNA 代谢标定检测到 30 种鱼类,而通过电鱼检测到 28 种,eDNA 对每个河流系统的取样点要求更少。要达到≥95%的估计物种丰富度,eDNA分析需要在三条河流系统中的1到9个地点进行,每条河流系统的长度为10公里。在物种最丰富的河流中,一个 eDNA 采样点的物种丰富度(n = 20 种)甚至比通过电鱼达到估计物种丰富度的 95% 所需的九个采样点(n = 9 种)还要高。为了考虑到 eDNA 粒子在更远距离(1 公里)上的稀释和退化,在上游和下游地点取样可能至关重要,战略地点的选择还需要考虑邻近溪流的流入量、底质类型和河流流速等因素,所有这些因素都会影响特定物种的栖息地占有率。在较小的范围内,关键取样点的位置在 100 米横断面内仅有适度差异,这为精确放置这些取样点提供了信息。我们的工作凸显了用于河流生物多样性评估的 eDNA 分析的稳健性和成本效益,展示了加强各种保护措施的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
期刊最新文献
Urban forest indicator assessment for nature-based solutions to connect biodiversity and people Drivers of prehistoric cultural evolution in the Chengdu Plain: Fire events and environmental changes during the middle and late Holocene A novel integrated socio-ecological-economic index for assessing heat health risk Long-term water quality dynamics and trend assessment reveal the effectiveness of ecological compensation: Insights from China’s first cross-provincial compensation watershed Tracking ecosystem stability across boreal Siberia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1