Chemical reduction-induced defect-rich and synergistic effects of reduced graphene oxide based Cu-doped NiO nanocomposite (RGO@Cu-NiO NCs) decorated on woven carbon fiber for supercapacitor device and their charge storage mechanism

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-11-15 DOI:10.1016/j.est.2024.114578
Fouzia Mashkoor , Mohd Shoeb , Javed Alam Khan , Mohammed Ashraf Gondal , Changyoon Jeong
{"title":"Chemical reduction-induced defect-rich and synergistic effects of reduced graphene oxide based Cu-doped NiO nanocomposite (RGO@Cu-NiO NCs) decorated on woven carbon fiber for supercapacitor device and their charge storage mechanism","authors":"Fouzia Mashkoor ,&nbsp;Mohd Shoeb ,&nbsp;Javed Alam Khan ,&nbsp;Mohammed Ashraf Gondal ,&nbsp;Changyoon Jeong","doi":"10.1016/j.est.2024.114578","DOIUrl":null,"url":null,"abstract":"<div><div>In today's technological landscape, energy storage devices such as batteries and supercapacitors play a critical role, with hybrid variants attracting significant attention. This study focuses on synthesizing a ternary nanocomposite material composed of reduced graphene oxide adorned Cu-doped NiO (RGO@Cu-NiO NC) for high-performance supercapacitor device applications. Unlike most research that analyzes NiO-based nanocomposites in alkaline electrolytes, our study explores RGO@Cu-NiO NCs coated on woven carbon fiber in Na<sub>2</sub>SO<sub>4</sub> electrolyte, revealing a more dominant surface reaction mechanism. Electrochemical analysis unveiled that the specific capacitances of RGO@Cu-NiO NCs surpass those of Cu-doped NiO NPs by 1.14 times and those of pristine NiO nanoparticles (NPs) by 1.28 times, showcasing a remarkable enhancement in performance. Additionally, the study investigated the charge storage mechanism, providing intriguing insights into the capacity contribution from RGO@Cu-NiO NC to the overall capacitance. The outstanding performance of RGO@Cu-NiO NCs is attributed to incorporating RGO sheets and enhancing charge-storage capacity through facilitated conductive networks. Impressively, the material retained 94 % capacity even after 10,000 cycles. Furthermore, a symmetric supercapacitor device (SSD) based on RGO@Cu-NiO NCs demonstrated a notable specific capacitance of 261.25 F/g at 1.5 A/g, along with 43.54 Wh/kg energy density at 750 W/kg power density, and retained ~96 % capacitance after 10,000 cycles. These findings establish RGO@Cu-NiO nanocomposites as auspicious materials for advanced supercapacitor applications.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114578"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24041641","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In today's technological landscape, energy storage devices such as batteries and supercapacitors play a critical role, with hybrid variants attracting significant attention. This study focuses on synthesizing a ternary nanocomposite material composed of reduced graphene oxide adorned Cu-doped NiO (RGO@Cu-NiO NC) for high-performance supercapacitor device applications. Unlike most research that analyzes NiO-based nanocomposites in alkaline electrolytes, our study explores RGO@Cu-NiO NCs coated on woven carbon fiber in Na2SO4 electrolyte, revealing a more dominant surface reaction mechanism. Electrochemical analysis unveiled that the specific capacitances of RGO@Cu-NiO NCs surpass those of Cu-doped NiO NPs by 1.14 times and those of pristine NiO nanoparticles (NPs) by 1.28 times, showcasing a remarkable enhancement in performance. Additionally, the study investigated the charge storage mechanism, providing intriguing insights into the capacity contribution from RGO@Cu-NiO NC to the overall capacitance. The outstanding performance of RGO@Cu-NiO NCs is attributed to incorporating RGO sheets and enhancing charge-storage capacity through facilitated conductive networks. Impressively, the material retained 94 % capacity even after 10,000 cycles. Furthermore, a symmetric supercapacitor device (SSD) based on RGO@Cu-NiO NCs demonstrated a notable specific capacitance of 261.25 F/g at 1.5 A/g, along with 43.54 Wh/kg energy density at 750 W/kg power density, and retained ~96 % capacitance after 10,000 cycles. These findings establish RGO@Cu-NiO nanocomposites as auspicious materials for advanced supercapacitor applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
编织碳纤维上装饰的还原氧化石墨烯基铜掺杂氧化镍纳米复合材料 (RGO@Cu-NiO NCs) 化学还原诱导的富缺陷和协同效应及其用于超级电容器器件的电荷存储机制
在当今的技术领域,电池和超级电容器等储能设备发挥着至关重要的作用,其中混合变体备受关注。本研究的重点是合成一种由还原氧化石墨烯和掺铜氧化镍(RGO@Cu-NiO NC)组成的三元纳米复合材料,用于高性能超级电容器设备的应用。与大多数分析碱性电解质中氧化镍基纳米复合材料的研究不同,我们的研究探讨了在 Na2SO4 电解质中涂覆在碳纤维编织物上的 RGO@Cu-NiO NC,揭示了一种更主要的表面反应机制。电化学分析表明,RGO@Cu-NiO NCs 的比电容是掺铜 NiO NPs 的 1.14 倍,是原始 NiO 纳米粒子(NPs)的 1.28 倍,性能显著提高。此外,研究还探讨了电荷存储机制,为 RGO@Cu-NiO NC 对整体电容的容量贡献提供了有趣的见解。RGO@Cu-NiO NCs 的出色性能归功于加入了 RGO 片,并通过促进导电网络提高了电荷存储容量。令人印象深刻的是,这种材料在经过 10,000 次循环后仍能保持 94% 的容量。此外,基于 RGO@Cu-NiO NCs 的对称超级电容器器件 (SSD) 在 1.5 A/g 的条件下显示出 261.25 F/g 的显著比电容,在 750 W/kg 的功率密度条件下显示出 43.54 Wh/kg 的能量密度,并在 10,000 次循环后保持了约 96% 的电容。这些发现使 RGO@Cu-NiO 纳米复合材料成为先进超级电容器应用的理想材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Urea-aided phase change thermal energy storage performance regulation for thermal management A novel photovoltaic-thermoelectric hybrid system with an anisotropic shape-stale phase change composites Nickel foam supported CuO/Co3O4/r-GO is used as electrode material for non-enzymatic glucose sensors and high performance supercapacitors Multifunctional cu-Cu3P heterojunction embedded in hierarchically porous carbon nanofibers to strengthen adsorption and catalytic effects based on built-in electric field for liS cell Nickel‑cobalt oxide nanowires with oxygen vacancies supported on CVD graphene networks for all-solid-state asymmetric supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1