Performance analysis of solar collectors with nano-enhanced phase change materials during transitional periods between cold and warm seasons in the continental temperate climates

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2025-02-19 DOI:10.1016/j.est.2025.115659
Răzvan Calotă , Octavian Pop , Cristiana Croitoru , Florin Bode , Charles Berville , Emanuil Ovadiuc
{"title":"Performance analysis of solar collectors with nano-enhanced phase change materials during transitional periods between cold and warm seasons in the continental temperate climates","authors":"Răzvan Calotă ,&nbsp;Octavian Pop ,&nbsp;Cristiana Croitoru ,&nbsp;Florin Bode ,&nbsp;Charles Berville ,&nbsp;Emanuil Ovadiuc","doi":"10.1016/j.est.2025.115659","DOIUrl":null,"url":null,"abstract":"<div><div>The European Union's ambitious goals to reduce carbon emissions and improve energy efficiency has highlighted the importance of renewable energy technologies like solar collectors. Buildings, responsible for a significant share of the EU's energy consumption and greenhouse gas emissions, can benefit from solar collectors integrated with thermal energy storage systems to optimize both heating and cooling. This study investigates how the integration of nano-enhanced phase change materials (nePCM) into a transpired solar collector (TSC) can improve thermal energy storage and efficiency. To explore this, an experimental setup was constructed and tested under real conditions. This study evaluates a transpired solar collector (TSC) integrated with nano-enhanced phase change materials (nePCMs) for thermal energy storage. Experimental results revealed plate temperatures exceeding ambient by up to 20 °C and nighttime outlet air temperatures raised by 2–3 °C. The system achieved an average efficiency of 50 %, validated by a mathematical model (MBE: 3.13 %, RMSE: 3.86 %). This demonstrates the potential of nePCMs to enhance solar energy storage and efficiency under real-world conditions.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"114 ","pages":"Article 115659"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X2500372X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The European Union's ambitious goals to reduce carbon emissions and improve energy efficiency has highlighted the importance of renewable energy technologies like solar collectors. Buildings, responsible for a significant share of the EU's energy consumption and greenhouse gas emissions, can benefit from solar collectors integrated with thermal energy storage systems to optimize both heating and cooling. This study investigates how the integration of nano-enhanced phase change materials (nePCM) into a transpired solar collector (TSC) can improve thermal energy storage and efficiency. To explore this, an experimental setup was constructed and tested under real conditions. This study evaluates a transpired solar collector (TSC) integrated with nano-enhanced phase change materials (nePCMs) for thermal energy storage. Experimental results revealed plate temperatures exceeding ambient by up to 20 °C and nighttime outlet air temperatures raised by 2–3 °C. The system achieved an average efficiency of 50 %, validated by a mathematical model (MBE: 3.13 %, RMSE: 3.86 %). This demonstrates the potential of nePCMs to enhance solar energy storage and efficiency under real-world conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Investigation of La2FeO4-rGO nanocomposite electrode material for symmetric and asymmetric supercapacitor State of charge (SOC) estimation in electric vehicle (EV) battery management systems using ensemble methods and neural networks An eco-friendly and biodegradable chitosan fiber-based separator with ion transport modulation towards highly reversible Zn metal anodes Study on heat transfer characteristics of directly buried casing energy storage body backfilled with phase change material γ-Graphdiyne decorated with Y and Zr: A DFT study on hydrogen storage and material properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1