Sen Huang , Jianming Lian , Srinivas Katipamula , Robert Lutes
{"title":"Transactive control for grid-interactive efficient commercial buildings","authors":"Sen Huang , Jianming Lian , Srinivas Katipamula , Robert Lutes","doi":"10.1016/j.apenergy.2024.124675","DOIUrl":null,"url":null,"abstract":"<div><div>Transactive control (TC) is a type of distributed control strategy that uses market mechanisms to coordinate distinct objectives of individual entities. Through grid-interactive efficient buildings, TC can help achieve power balance in the electrical power grid under high penetration of renewable energy. This paper presents a standard TC approach for commercial heating, ventilation, and air-conditioning (HVAC) systems. This TC approach includes a flexible market structure to accommodate the variances in system configurations of HVAC systems, and an extensible market-based control process to support various demand response (DR) services. In addition, we develop a software workflow for deploying this TC approach. The software workflow is based on VOLTTRON, which is a distributed sensing and control software platform, and encapsulates the process of deploying decentralized control architecture and market-based control on a large scale. Case studies were conducted with both building energy simulations and field tests. The results show that TC is effective at providing real time price, demand limiting, and load following DR services with the studied HVAC systems.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"378 ","pages":"Article 124675"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924020580","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Transactive control (TC) is a type of distributed control strategy that uses market mechanisms to coordinate distinct objectives of individual entities. Through grid-interactive efficient buildings, TC can help achieve power balance in the electrical power grid under high penetration of renewable energy. This paper presents a standard TC approach for commercial heating, ventilation, and air-conditioning (HVAC) systems. This TC approach includes a flexible market structure to accommodate the variances in system configurations of HVAC systems, and an extensible market-based control process to support various demand response (DR) services. In addition, we develop a software workflow for deploying this TC approach. The software workflow is based on VOLTTRON, which is a distributed sensing and control software platform, and encapsulates the process of deploying decentralized control architecture and market-based control on a large scale. Case studies were conducted with both building energy simulations and field tests. The results show that TC is effective at providing real time price, demand limiting, and load following DR services with the studied HVAC systems.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.