Shuang Dai, Matt Eames, Raffaele Vinai, Voicu Ion Sucala
{"title":"EnergyNet: A modality-aware attention fusion network for building energy efficiency classification","authors":"Shuang Dai, Matt Eames, Raffaele Vinai, Voicu Ion Sucala","doi":"10.1016/j.apenergy.2024.124888","DOIUrl":null,"url":null,"abstract":"<div><div>In the face of rising global energy demands, precise classification of building energy efficiency is critical for advancing sustainable energy practices. Traditional classification methods have been limited by their inability to effectively integrate diverse data types. Additionally, the valuable environmental information visible in building street view images has been consistently overlooked, leading to less comprehensive evaluations. This study introduces EnergyNet, an innovative framework designed to synergistically fuse multimodal data, including the environmental context that has previously been underutilized. The framework employs a state-of-the-art dual-branch architecture with a modality-aware attention mechanism to optimize the interpretation and fusion of both visual and textual data. Comparative experiments on real-world data demonstrate that EnergyNet substantially improves upon existing models, achieving an accuracy rate of 87.22% and an F1 score improvement of 5.39% over the best-performing benchmarks. The proven generalization capacity of the framework across different geographical regions highlights its potential as a scalable and effective solution for enhancing global energy efficiency measures.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"379 ","pages":"Article 124888"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924022712","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In the face of rising global energy demands, precise classification of building energy efficiency is critical for advancing sustainable energy practices. Traditional classification methods have been limited by their inability to effectively integrate diverse data types. Additionally, the valuable environmental information visible in building street view images has been consistently overlooked, leading to less comprehensive evaluations. This study introduces EnergyNet, an innovative framework designed to synergistically fuse multimodal data, including the environmental context that has previously been underutilized. The framework employs a state-of-the-art dual-branch architecture with a modality-aware attention mechanism to optimize the interpretation and fusion of both visual and textual data. Comparative experiments on real-world data demonstrate that EnergyNet substantially improves upon existing models, achieving an accuracy rate of 87.22% and an F1 score improvement of 5.39% over the best-performing benchmarks. The proven generalization capacity of the framework across different geographical regions highlights its potential as a scalable and effective solution for enhancing global energy efficiency measures.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.