Enhancing solar-driven hydrogen production through photoelectrochemical methods via dual transition metal doping of titanium oxide to form an impurity energy band

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-11-07 DOI:10.1016/j.solmat.2024.113243
Ranjith Balu , Lalitha Gnanasekaran , P.C. Karthika , Omar H. Abd-Elkader , Woo Kyoung Kim , Vasudeva Reddy Minnam Reddy , Monit Kapoor , Suresh Singh , Mahimaluru Lavanya , Gautham Devendrapandi
{"title":"Enhancing solar-driven hydrogen production through photoelectrochemical methods via dual transition metal doping of titanium oxide to form an impurity energy band","authors":"Ranjith Balu ,&nbsp;Lalitha Gnanasekaran ,&nbsp;P.C. Karthika ,&nbsp;Omar H. Abd-Elkader ,&nbsp;Woo Kyoung Kim ,&nbsp;Vasudeva Reddy Minnam Reddy ,&nbsp;Monit Kapoor ,&nbsp;Suresh Singh ,&nbsp;Mahimaluru Lavanya ,&nbsp;Gautham Devendrapandi","doi":"10.1016/j.solmat.2024.113243","DOIUrl":null,"url":null,"abstract":"<div><div>Developing a photoanode that is stable, efficient, and cost-effective for photoelectrochemical water splitting poses a significant challenge. To address this, we have successfully synthesized cobalt and chromium-doped Titanium dioxide (CoCrTiO<sub>2</sub>) using the hydrothermal method. This innovative approach results in an efficient, stable, and economical material. The introduction of Co and Cr through doping creates an intermediate band energy within TiO<sub>2</sub>, thereby enhancing charge separation and movement. The performance of CoCrTiO<sub>2</sub> in the photoelectrochemical water splitting process is noteworthy. At 0 V vs Ag/AgCl, CoCrTiO<sub>2</sub> exhibits a photocurrent density of 3.45 mAcm<sup>−2</sup>, representing an impressive 8.5 times increase compared to bare TiO<sub>2</sub>. Furthermore, when employed as a photoanode, CoCrTiO<sub>2</sub> demonstrates a significant increase in hydrogen production. The amount of hydrogen generated is measured at 67.8 μmolecm<sup>−2</sup>, surpassing bare TiO<sub>2</sub> by a factor of 5.6. Analysis data strongly supports CoCrTiO<sub>2</sub> as an excellent candidate for advancing the field of photoelectrochemical water splitting due to its exceptional performance characteristics.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113243"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005555","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Developing a photoanode that is stable, efficient, and cost-effective for photoelectrochemical water splitting poses a significant challenge. To address this, we have successfully synthesized cobalt and chromium-doped Titanium dioxide (CoCrTiO2) using the hydrothermal method. This innovative approach results in an efficient, stable, and economical material. The introduction of Co and Cr through doping creates an intermediate band energy within TiO2, thereby enhancing charge separation and movement. The performance of CoCrTiO2 in the photoelectrochemical water splitting process is noteworthy. At 0 V vs Ag/AgCl, CoCrTiO2 exhibits a photocurrent density of 3.45 mAcm−2, representing an impressive 8.5 times increase compared to bare TiO2. Furthermore, when employed as a photoanode, CoCrTiO2 demonstrates a significant increase in hydrogen production. The amount of hydrogen generated is measured at 67.8 μmolecm−2, surpassing bare TiO2 by a factor of 5.6. Analysis data strongly supports CoCrTiO2 as an excellent candidate for advancing the field of photoelectrochemical water splitting due to its exceptional performance characteristics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在氧化钛中掺入双过渡金属以形成杂质能带,利用光电化学方法提高太阳能驱动的制氢能力
开发稳定、高效、经济的光电化学水分离光阳极是一项重大挑战。为此,我们采用水热法成功合成了掺钴和铬的二氧化钛(CoCrTiO2)。这种创新方法产生了一种高效、稳定和经济的材料。通过掺杂引入钴和铬,在二氧化钛中产生了中间带能,从而增强了电荷分离和移动。CoCrTiO2 在光电化学分水过程中的性能值得关注。与 Ag/AgCl 相比,在 0 V 电压下,CoCrTiO2 的光电流密度为 3.45 mAcm-2,比裸 TiO2 高出 8.5 倍,令人印象深刻。此外,在用作光阳极时,CoCrTiO2 的产氢量也有显著提高。测得的氢气产生量为 67.8 μmolecm-2,比裸 TiO2 高出 5.6 倍。分析数据有力地支持了 CoCrTiO2 因其卓越的性能特点而成为推动光电化学水分离领域发展的最佳候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1