Complementarity and competitive trade-offs enhance forage productivity, nutritive balance, land and water use, and economics in legume-grass intercropping
Chong Liang Luo , Hai Xia Duan , Ya Lin Wang , Hong Jin Liu , Shi Xiao Xu
{"title":"Complementarity and competitive trade-offs enhance forage productivity, nutritive balance, land and water use, and economics in legume-grass intercropping","authors":"Chong Liang Luo , Hai Xia Duan , Ya Lin Wang , Hong Jin Liu , Shi Xiao Xu","doi":"10.1016/j.fcr.2024.109642","DOIUrl":null,"url":null,"abstract":"<div><div>Legume-grass intercropping is proposed as a globally sustainable approach to enhance forage crop productivity and quality while supporting agropastoral ecosystem functioning. However, the mechanism involved in interspecific complementarity and competition driven forage productivity, quality, resource utilization, and economic benefits across different proportions of intercrops remains unclear, particularly under interannual climate variability. To address this, a 3-year field experiment was conducted in the agropastoral area of the Qinghai-Tibet Plateau (QTP) to assess the effects of different legume proportions (five legume-grass intercropping and their respective monocultures) and growing seasons on the productive, biological and economic viability. The results showed that legume proportions of 40 % and 50 % achieved the highest forage yield, system productivity (SP), water use efficiency (WUE), land equivalent ratio (LER), net profit (NP), return on investment (ROI), biodiversity effect (NE), and complementarity effect (CE) compared to other intercropping and monocultures (<em>P</em> < 0.05). As the legume proportion increased, yield stability, selection effect, crude protein (CP) and ash contents, grass aggressivity and competitive ratio significantly increased (<em>P</em> < 0.05), while ether extract (EE), crude fiber (CF), nitrogen-free extract (NFE), gross energy (GE), legume aggressivity and competitive ratio significantly decreased (<em>P</em> < 0.05). Additionally, the lowest forage yield, SP, NP, ROI, CP, EE, NFE, GE, and the highest WUE, LER, NE, CE, CF and ash contents were observed during the dry season (<em>P</em> < 0.05). Overall, our results suggested that the optimal legume proportions of 40–50 % increased forage productivity, land and water use efficiency, and economic benefits in intercropping system by improving complementarity and competitive trade-offs, which helps the intercropping systems better adapt to climatic droughts in the semiarid regions of the QTP.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"319 ","pages":"Article 109642"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429024003952","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Legume-grass intercropping is proposed as a globally sustainable approach to enhance forage crop productivity and quality while supporting agropastoral ecosystem functioning. However, the mechanism involved in interspecific complementarity and competition driven forage productivity, quality, resource utilization, and economic benefits across different proportions of intercrops remains unclear, particularly under interannual climate variability. To address this, a 3-year field experiment was conducted in the agropastoral area of the Qinghai-Tibet Plateau (QTP) to assess the effects of different legume proportions (five legume-grass intercropping and their respective monocultures) and growing seasons on the productive, biological and economic viability. The results showed that legume proportions of 40 % and 50 % achieved the highest forage yield, system productivity (SP), water use efficiency (WUE), land equivalent ratio (LER), net profit (NP), return on investment (ROI), biodiversity effect (NE), and complementarity effect (CE) compared to other intercropping and monocultures (P < 0.05). As the legume proportion increased, yield stability, selection effect, crude protein (CP) and ash contents, grass aggressivity and competitive ratio significantly increased (P < 0.05), while ether extract (EE), crude fiber (CF), nitrogen-free extract (NFE), gross energy (GE), legume aggressivity and competitive ratio significantly decreased (P < 0.05). Additionally, the lowest forage yield, SP, NP, ROI, CP, EE, NFE, GE, and the highest WUE, LER, NE, CE, CF and ash contents were observed during the dry season (P < 0.05). Overall, our results suggested that the optimal legume proportions of 40–50 % increased forage productivity, land and water use efficiency, and economic benefits in intercropping system by improving complementarity and competitive trade-offs, which helps the intercropping systems better adapt to climatic droughts in the semiarid regions of the QTP.
期刊介绍:
Field Crops Research is an international journal publishing scientific articles on:
√ experimental and modelling research at field, farm and landscape levels
on temperate and tropical crops and cropping systems,
with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.