Bio-based fertilisers can replace conventional inorganic P fertilisers under European pedoclimatic conditions

IF 5.6 1区 农林科学 Q1 AGRONOMY Field Crops Research Pub Date : 2025-02-19 DOI:10.1016/j.fcr.2025.109803
Hanna Frick , Else K. Bünemann , Alicia Hernandez-Mora , Herbert Eigner , Stefan Geyer , Olivier Duboc , Jakob Santner , Ramiro Recena , Antonio Delgado , Aurélien D´Oria , Mustapha Arkoun , Zoltán Tóth , Lauri Jauhiainen , Kari Ylivainio
{"title":"Bio-based fertilisers can replace conventional inorganic P fertilisers under European pedoclimatic conditions","authors":"Hanna Frick ,&nbsp;Else K. Bünemann ,&nbsp;Alicia Hernandez-Mora ,&nbsp;Herbert Eigner ,&nbsp;Stefan Geyer ,&nbsp;Olivier Duboc ,&nbsp;Jakob Santner ,&nbsp;Ramiro Recena ,&nbsp;Antonio Delgado ,&nbsp;Aurélien D´Oria ,&nbsp;Mustapha Arkoun ,&nbsp;Zoltán Tóth ,&nbsp;Lauri Jauhiainen ,&nbsp;Kari Ylivainio","doi":"10.1016/j.fcr.2025.109803","DOIUrl":null,"url":null,"abstract":"<div><div>Mineable phosphorus (P) resources are finite and unevenly distributed globally. Recycling of P from different waste streams as bio-based fertilisers (BBFs) provides a viable option for closing nutrient cycles. To implement this approach effectively, it is necessary to evaluate the P fertiliser efficiency of BBFs under field conditions using a mechanistic approach that links their performance to their chemical composition. This study aimed to test to which extent BBFs can replace conventional inorganic P fertilisers under different pedoclimatic conditions. To this end, the same eight BBFs were tested in field experiments over two consecutive years at five different sites in Europe growing cereals and sunflower. Furthermore, the residual effect of the BBFs in a succeeding crop was investigated. We found that none of the tested P-BBFs resulted in significantly lower yield or total P uptake than triple superphosphate. Ammonium magnesium phosphate (struvite), dicalcium phosphate and phytate-based fertilisers performed best across all field experiments (mean mineral replacement values of 80 – 125 %). No consistent effect of soil or climatic conditions was found. Only marginal residual effects were observed, suggesting that longer trials with repeated applications are necessary to quantify residual effects. The fact that two out of five trial sites were not responsive to P fertilisation highlights the need to consider soil P status for the successful implementation of P fertiliser field trials as well as for fertilising recommendations. In conclusion, most tested BBFs have the potential to replace conventional inorganic P fertilisers across a range of European soils and climate.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"325 ","pages":"Article 109803"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429025000681","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Mineable phosphorus (P) resources are finite and unevenly distributed globally. Recycling of P from different waste streams as bio-based fertilisers (BBFs) provides a viable option for closing nutrient cycles. To implement this approach effectively, it is necessary to evaluate the P fertiliser efficiency of BBFs under field conditions using a mechanistic approach that links their performance to their chemical composition. This study aimed to test to which extent BBFs can replace conventional inorganic P fertilisers under different pedoclimatic conditions. To this end, the same eight BBFs were tested in field experiments over two consecutive years at five different sites in Europe growing cereals and sunflower. Furthermore, the residual effect of the BBFs in a succeeding crop was investigated. We found that none of the tested P-BBFs resulted in significantly lower yield or total P uptake than triple superphosphate. Ammonium magnesium phosphate (struvite), dicalcium phosphate and phytate-based fertilisers performed best across all field experiments (mean mineral replacement values of 80 – 125 %). No consistent effect of soil or climatic conditions was found. Only marginal residual effects were observed, suggesting that longer trials with repeated applications are necessary to quantify residual effects. The fact that two out of five trial sites were not responsive to P fertilisation highlights the need to consider soil P status for the successful implementation of P fertiliser field trials as well as for fertilising recommendations. In conclusion, most tested BBFs have the potential to replace conventional inorganic P fertilisers across a range of European soils and climate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Field Crops Research
Field Crops Research 农林科学-农艺学
CiteScore
9.60
自引率
12.10%
发文量
307
审稿时长
46 days
期刊介绍: Field Crops Research is an international journal publishing scientific articles on: √ experimental and modelling research at field, farm and landscape levels on temperate and tropical crops and cropping systems, with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.
期刊最新文献
Bio-based fertilisers can replace conventional inorganic P fertilisers under European pedoclimatic conditions Better root length distribution in the deep soil profile enhances upland cotton performance Root system architecture in a barley RIL population: Agronomic effects of seedling and adult root traits Minimum tillage reduces variability and economic risks in cotton-maize rotations in Northern Benin Yield gains and resource use advantages driven by legume choice and row ratio in cotton/legume intercropping under arid-irrigated conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1