Andrea Martinez-Topete , Manuel Robles , Gloria Perez , Fernando Martin-Consuegra , Marta Castellote , Eva Jimenez-Relinque
{"title":"Ecofriendly multifunctional bismuth oxyiodides pigment and paint coatings: Photocatalytic and cooling functionalities","authors":"Andrea Martinez-Topete , Manuel Robles , Gloria Perez , Fernando Martin-Consuegra , Marta Castellote , Eva Jimenez-Relinque","doi":"10.1016/j.jphotochem.2024.116151","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the potential application of bismuth oxyiodides as “cool” and photocatalytic materials. The BiOI-orange (microflower) and Bi<sub>5</sub>O<sub>7</sub>I-white (microneedle) pigments demonstrated multifunctional properties. The enhanced photocatalytic activity is attributed to their suitable band structures for NOx pollutant degradation. The promising thermal performance compared to the uncoated metal sheets is due to their high NIR reflective and emissivity properties. In contrast, the BiOI-red (stacked-sheet structure) pigment is effective as a “cool” pigment but lacks the optimal band structure and morphology for NOx photocatalytic degradation. Incorporating these pigments into alkyd-resin paint formulations significantly reduced their photocatalytic reactivity, likely due to the degradation of the alkyd resin binder. However, the thermal performance of the paint formulations remained favorable. These results imply that Bi<sub>x</sub>O<sub>y</sub>I<sub>z</sub> pigments have potential as “cool” pigments for energy-efficient building facade and roof applications. To optimize their photocatalytic performance in resin-based paint formulations, further research is necessary. Exploring alternative inorganic binders is another viable option.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116151"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024006956","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work explores the potential application of bismuth oxyiodides as “cool” and photocatalytic materials. The BiOI-orange (microflower) and Bi5O7I-white (microneedle) pigments demonstrated multifunctional properties. The enhanced photocatalytic activity is attributed to their suitable band structures for NOx pollutant degradation. The promising thermal performance compared to the uncoated metal sheets is due to their high NIR reflective and emissivity properties. In contrast, the BiOI-red (stacked-sheet structure) pigment is effective as a “cool” pigment but lacks the optimal band structure and morphology for NOx photocatalytic degradation. Incorporating these pigments into alkyd-resin paint formulations significantly reduced their photocatalytic reactivity, likely due to the degradation of the alkyd resin binder. However, the thermal performance of the paint formulations remained favorable. These results imply that BixOyIz pigments have potential as “cool” pigments for energy-efficient building facade and roof applications. To optimize their photocatalytic performance in resin-based paint formulations, further research is necessary. Exploring alternative inorganic binders is another viable option.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.