A machine learning and DFT assisted analysis of benzodithiophene based organic dyes for possible photovoltaic applications

IF 4.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Photochemistry and Photobiology A-chemistry Pub Date : 2024-11-13 DOI:10.1016/j.jphotochem.2024.116157
Cihat Güleryüz , Sajjad H. Sumrra , Abrar U. Hassan , Ayesha Mohyuddin , Azal S. Waheeb , Masar A. Awad , Ayad R. Jalfan , Sadaf Noreen , Hussein A.K. Kyhoiesh , Islam H. El Azab
{"title":"A machine learning and DFT assisted analysis of benzodithiophene based organic dyes for possible photovoltaic applications","authors":"Cihat Güleryüz ,&nbsp;Sajjad H. Sumrra ,&nbsp;Abrar U. Hassan ,&nbsp;Ayesha Mohyuddin ,&nbsp;Azal S. Waheeb ,&nbsp;Masar A. Awad ,&nbsp;Ayad R. Jalfan ,&nbsp;Sadaf Noreen ,&nbsp;Hussein A.K. Kyhoiesh ,&nbsp;Islam H. El Azab","doi":"10.1016/j.jphotochem.2024.116157","DOIUrl":null,"url":null,"abstract":"<div><div>We present a synergistic approach to combine Machine Learning (ML), Density Functional Theory (DFT), and molecular descriptor analysis for designing high-performance benzodithiophene (BDT) based chromophores. A dataset of 366 BDT incorporated moieties is compiled from literature while their molecular descriptors are designed by using Python programming language. Linear and Random Forest Regression models produces best results to predict their exciton binding energy (Eb) with their R-Squared (R2) value 0.87 and 0.94 respectively. Their DFT calculations provides additional features, including molecular charges. Their ML models also reveals that their E<sub>b</sub> values are a crucial predictor for their photovoltaic (PV) performance as its lower value could facilitate efficient charge carrier separation. For this, their hydrogen bond acceptors (HBA) and topological polar surface area (TPSA) emerges as key descriptors during their regression analysis. Their DFT validation shows negligible differences in their molecular charges to suggest their electron donor/acceptor moieties can significantly impact their chromophore nature. The current research work is helpful for efficiently screening the suitability of organic chromophores for their PV applications through advanced computational tools.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116157"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024007019","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a synergistic approach to combine Machine Learning (ML), Density Functional Theory (DFT), and molecular descriptor analysis for designing high-performance benzodithiophene (BDT) based chromophores. A dataset of 366 BDT incorporated moieties is compiled from literature while their molecular descriptors are designed by using Python programming language. Linear and Random Forest Regression models produces best results to predict their exciton binding energy (Eb) with their R-Squared (R2) value 0.87 and 0.94 respectively. Their DFT calculations provides additional features, including molecular charges. Their ML models also reveals that their Eb values are a crucial predictor for their photovoltaic (PV) performance as its lower value could facilitate efficient charge carrier separation. For this, their hydrogen bond acceptors (HBA) and topological polar surface area (TPSA) emerges as key descriptors during their regression analysis. Their DFT validation shows negligible differences in their molecular charges to suggest their electron donor/acceptor moieties can significantly impact their chromophore nature. The current research work is helpful for efficiently screening the suitability of organic chromophores for their PV applications through advanced computational tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习和 DFT 辅助分析苯并二噻吩基有机染料在光伏领域的可能应用
我们提出了一种将机器学习(ML)、密度泛函理论(DFT)和分子描述符分析相结合的协同方法,用于设计基于苯并二噻吩(BDT)的高性能发色团。我们从文献中汇编了一个包含 366 个 BDT 结合分子的数据集,并使用 Python 编程语言设计了它们的分子描述符。线性回归模型和随机森林回归模型在预测它们的激子结合能(Eb)方面取得了最佳结果,其 R 平方(R2)值分别为 0.87 和 0.94。他们的 DFT 计算提供了更多特征,包括分子电荷。他们的 ML 模型还显示,Eb 值是预测其光伏(PV)性能的关键因素,因为较低的 Eb 值可以促进有效的电荷载流子分离。为此,在回归分析过程中,它们的氢键受体(HBA)和拓扑极性表面积(TPSA)成为关键的描述因子。DFT 验证显示,它们的分子电荷差异微乎其微,这表明它们的电子供体/受体分子对其发色团性质有重大影响。目前的研究工作有助于通过先进的计算工具有效筛选出适合光伏应用的有机发色团。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
580
审稿时长
48 days
期刊介绍: JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds. All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor). The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.
期刊最新文献
ZnCo2S4/CuO heterojunction photocatalyst for activation of persulfate to degrade p-nitrophenol Green synthesis of infrared controlled AgNP/graphite/polyvinylidene fluoride composite membranes for removal of organic pollutants Photocatalytic ammonia synthesis from nitrogen in water using iron oxides: Comparative efficiency of goethite, magnetite, and hematite A machine learning and DFT assisted analysis of benzodithiophene based organic dyes for possible photovoltaic applications Highly selective and sensitive N-amidothiourea-based fluorescence chemosensor for detecting Zn2+ ions and cell Imaging: Potential applications for plasma membrane detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1