Jinjiu Qi , Yuan Yuan , Qifa He , Pengtao Yang , Hua-Xin Peng , Runhua Fan
{"title":"Realizing radio-frequency epsilon-near-zero response via embedding cobalt nanoparticles into polyimide","authors":"Jinjiu Qi , Yuan Yuan , Qifa He , Pengtao Yang , Hua-Xin Peng , Runhua Fan","doi":"10.1016/j.coco.2024.102160","DOIUrl":null,"url":null,"abstract":"<div><div>Epsilon-near-zero (ENZ) materials have drawn considerable attention due to their enticing properties, such as large wavelength, quasi-static and tunneling. Most research on ENZ behaviors is conducted in the visible, microwave, and infrared bands, but there is seldom research in radio frequency (MHz ∼ GHz). In this work, polyimide (PI) embedded cobalt nanoparticles (NPs) were fabricated to realize ENZ behavior in MHz-bands. The percolation networks were constructed and the dielectric resonance frequency was observed for PI-35 wt% Co composite at 580 MHz. As Co content increased, the ENZ response was obtained due to dielectric resonance and plasma oscillation. Also, conduction mechanism of PI/Co composites undergo a change from hopping state to metal-like state. The reactance value changed from negative to positive with increasing frequency, corresponding to the transition of permittivity from positive to negative value.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"52 ","pages":"Article 102160"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924003516","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Epsilon-near-zero (ENZ) materials have drawn considerable attention due to their enticing properties, such as large wavelength, quasi-static and tunneling. Most research on ENZ behaviors is conducted in the visible, microwave, and infrared bands, but there is seldom research in radio frequency (MHz ∼ GHz). In this work, polyimide (PI) embedded cobalt nanoparticles (NPs) were fabricated to realize ENZ behavior in MHz-bands. The percolation networks were constructed and the dielectric resonance frequency was observed for PI-35 wt% Co composite at 580 MHz. As Co content increased, the ENZ response was obtained due to dielectric resonance and plasma oscillation. Also, conduction mechanism of PI/Co composites undergo a change from hopping state to metal-like state. The reactance value changed from negative to positive with increasing frequency, corresponding to the transition of permittivity from positive to negative value.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.