Mohammad Hossein Jahangir , Fatemeh Salmanpour , Erfan Sadeghitabar
{"title":"Feasibility assessment of using Wavestar energy converter in a grid-connected hybrid renewable energy system (a case study)","authors":"Mohammad Hossein Jahangir , Fatemeh Salmanpour , Erfan Sadeghitabar","doi":"10.1016/j.ecmx.2024.100784","DOIUrl":null,"url":null,"abstract":"<div><div>Renewable energies, as a sustainable alternative to fossil fuels, confront a twofold challenge characterized by intermittency and the imperative to enhance reliability. Hybrid energy systems (HES) emerge as a pragmatic solution with the potential to mitigate carbon emissions and foster self-sufficiency within local communities. This investigation primarily seeks to ascertain the optimal configuration of a HES integrated with Wavestar wave energy converter, considering economic, technical, and environmental factors, tailored to meet the electricity demands of two cities in Iran including Chabahar and Anzali alongside of the Caspian sea and Oman sea, respectively. For this purpose, HOMER software is used for modeling and optimization the energy systems. In both locations, the optimal system includes photovoltaic (PV), wind turbine (WT), Wavestar wave energy converter (WEC), diesel generator (DG), and batteries which results in cost of energy (COE) of 0.136 and 0.109 in Chabahar and Anzali, respectively. Sensitivity analysis reveals that wind speed significantly impacts COE and reliability, also grid electricity purchases play a vital role. Economic uncertainty highlights varying importance between capital costs for PV and WT in Anzali and Chabahar. Furthermore, this study delves into the limitations posed by the fuel dependency of diesel generators. Finally, by conducting a thorough assessment of solar energy potential by GIS software, the research identifies a favorable location for the establishment of a solar power plant, contributing to the overall feasibility of the proposed hybrid energy systems.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100784"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Renewable energies, as a sustainable alternative to fossil fuels, confront a twofold challenge characterized by intermittency and the imperative to enhance reliability. Hybrid energy systems (HES) emerge as a pragmatic solution with the potential to mitigate carbon emissions and foster self-sufficiency within local communities. This investigation primarily seeks to ascertain the optimal configuration of a HES integrated with Wavestar wave energy converter, considering economic, technical, and environmental factors, tailored to meet the electricity demands of two cities in Iran including Chabahar and Anzali alongside of the Caspian sea and Oman sea, respectively. For this purpose, HOMER software is used for modeling and optimization the energy systems. In both locations, the optimal system includes photovoltaic (PV), wind turbine (WT), Wavestar wave energy converter (WEC), diesel generator (DG), and batteries which results in cost of energy (COE) of 0.136 and 0.109 in Chabahar and Anzali, respectively. Sensitivity analysis reveals that wind speed significantly impacts COE and reliability, also grid electricity purchases play a vital role. Economic uncertainty highlights varying importance between capital costs for PV and WT in Anzali and Chabahar. Furthermore, this study delves into the limitations posed by the fuel dependency of diesel generators. Finally, by conducting a thorough assessment of solar energy potential by GIS software, the research identifies a favorable location for the establishment of a solar power plant, contributing to the overall feasibility of the proposed hybrid energy systems.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.