FaceFinder: A machine learning tool for identification of facial images from heterogenous datasets

George R. Nahass , Jeffrey C. Peterson , Kevin Heinze , Akriti Choudhary , Nikhila Khandwala , Chad A. Purnell , Pete Setabutr , Ann Q. Tran
{"title":"FaceFinder: A machine learning tool for identification of facial images from heterogenous datasets","authors":"George R. Nahass ,&nbsp;Jeffrey C. Peterson ,&nbsp;Kevin Heinze ,&nbsp;Akriti Choudhary ,&nbsp;Nikhila Khandwala ,&nbsp;Chad A. Purnell ,&nbsp;Pete Setabutr ,&nbsp;Ann Q. Tran","doi":"10.1016/j.ajoint.2024.100083","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To develop an algorithm to automate the organization of large photo databases using the Haar cascade algorithm for face and eye detection and machine learning tools in Python.</div></div><div><h3>Design</h3><div>Retrospective study for the purposes of clinical tool development.</div></div><div><h3>Methods</h3><div>We developed an algorithm, termed FaceFinder, to identify front facing images in a large dataset of facial, orthodontal and miscellaneous images. FaceFinder works by detecting the presence of faces and at least two eyes using the Haar cascade. Execution time was recorded using different-sized datasets. A total of 895 images were analyzed by FaceFinder using various thresholds for face and eye detection. Precision, recall, specificity, accuracy, and F1 score were computed by comparison to ground truth labels of the images as determined by a human grader.</div></div><div><h3>Results</h3><div>Using medium thresholds for face and eye detection, FaceFinder reached recall, accuracy, and F1 score of 89.3%, 91.6%, and 92.9%, respectively with an execution time per image was 0.91 s. Using the highest threshold for face and eye detection, FaceFinder achieved precision and specificity values of 98.3% and 99.2% respectively.</div></div><div><h3>Conclusions</h3><div>FaceFinder is capable of sorting through a heterogenous dataset of photos of patients with craniofacial disease and identifying high-quality front-facing facial images. This capability allows for automated sorting of large databases that can facilitate and expedite data preparation for further downstream analyses involving artificial intelligence and facial landmarking.</div></div>","PeriodicalId":100071,"journal":{"name":"AJO International","volume":"1 4","pages":"Article 100083"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJO International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950253524000832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To develop an algorithm to automate the organization of large photo databases using the Haar cascade algorithm for face and eye detection and machine learning tools in Python.

Design

Retrospective study for the purposes of clinical tool development.

Methods

We developed an algorithm, termed FaceFinder, to identify front facing images in a large dataset of facial, orthodontal and miscellaneous images. FaceFinder works by detecting the presence of faces and at least two eyes using the Haar cascade. Execution time was recorded using different-sized datasets. A total of 895 images were analyzed by FaceFinder using various thresholds for face and eye detection. Precision, recall, specificity, accuracy, and F1 score were computed by comparison to ground truth labels of the images as determined by a human grader.

Results

Using medium thresholds for face and eye detection, FaceFinder reached recall, accuracy, and F1 score of 89.3%, 91.6%, and 92.9%, respectively with an execution time per image was 0.91 s. Using the highest threshold for face and eye detection, FaceFinder achieved precision and specificity values of 98.3% and 99.2% respectively.

Conclusions

FaceFinder is capable of sorting through a heterogenous dataset of photos of patients with craniofacial disease and identifying high-quality front-facing facial images. This capability allows for automated sorting of large databases that can facilitate and expedite data preparation for further downstream analyses involving artificial intelligence and facial landmarking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FaceFinder:从异质数据集中识别面部图像的机器学习工具
目的使用哈尔级联算法进行人脸和眼睛检测,并使用 Python 中的机器学习工具开发一种算法,用于自动组织大型照片数据库。方法我们开发了一种称为 FaceFinder 的算法,用于识别大型面部、正齿和杂项图像数据集中的正面图像。FaceFinder 的工作原理是使用 Haar 级联检测人脸和至少两只眼睛的存在。使用不同大小的数据集记录了执行时间。FaceFinder 使用不同的阈值检测人脸和眼睛,共分析了 895 幅图像。结果使用中等阈值检测人脸和眼睛时,FaceFinder 的召回率、准确率和 F1 得分分别为 89.3%、91.6% 和 92.9%,每张图像的执行时间为 0.91 秒。结论FaceFinder 能够对颅面疾病患者照片的异质数据集进行分类,并识别高质量的正面面部图像。这项功能允许对大型数据库进行自动分类,从而促进并加快了数据准备工作,以便进一步进行涉及人工智能和面部标记的下游分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical profile of newly diagnosed glaucoma patients in Brazil Intravitreal dexamethasone implant concomitant to cataract surgery in retinitis pigmentosa: potential retinal preservation effect FaceFinder: A machine learning tool for identification of facial images from heterogenous datasets Gender based differences in electronic medical record utilization in an academic ophthalmology practice Evolving practice patterns of young retinal specialists: A five-year comparison of treatment and surgical preferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1