Mohammad E. Kashan , Alan S. Fung , Amir Hossein Eisapour , John Swift
{"title":"Utilizing novel industrialized heat exchanger plate in air-based photovoltaic/thermal collectors to enhance thermal and electrical efficiency","authors":"Mohammad E. Kashan , Alan S. Fung , Amir Hossein Eisapour , John Swift","doi":"10.1016/j.ecmx.2024.100752","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to design a highly efficient and applicable air-based photovoltaic-thermal (PVT) collector that maximizes both electrical and thermal energy efficiencies. An innovative industrialization-ready configuration of the air-based PVT system is proposed, utilizing an industrialized heat exchanger (GRIPMetal or GM) as the absorber plate for the PVT air channel. The heat exchanger consists of spikes and cavities to enhance the heat transfer coefficient in the air channel. The proposed heat exchanger plate minimally affects the dimensions and weight of the PVT collector. A numerical model, validated against experimental results, is used to ensure the accuracy of the simulation. The study is followed by a parametric study that investigates the geometric effects of the heat exchanger and air channel, as well as the airflow rate, on the overall performance of the PVT system. It is observed that the utilization of GM plates significantly reduces the average PV panel temperature (with a maximum of 28 ℃ reduction) and enhances the convective heat transfer coefficient in the air channel, the electrical and thermal efficiencies by approximately 164%, 16.1%, and 50%, respectively, when compared to a flat plate PVT collector. The results demonstrate that the proposed PVT collector effectively compensates for the pressure drops and excess fan power consumption at low Reynolds numbers due to the GM heat exchanger, resulting in higher overall system efficiency. The optimal configuration for the proposed PVT system is achieved by employing a low airflow rate, a narrow air channel, and GM spikes of the largest size available.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100752"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to design a highly efficient and applicable air-based photovoltaic-thermal (PVT) collector that maximizes both electrical and thermal energy efficiencies. An innovative industrialization-ready configuration of the air-based PVT system is proposed, utilizing an industrialized heat exchanger (GRIPMetal or GM) as the absorber plate for the PVT air channel. The heat exchanger consists of spikes and cavities to enhance the heat transfer coefficient in the air channel. The proposed heat exchanger plate minimally affects the dimensions and weight of the PVT collector. A numerical model, validated against experimental results, is used to ensure the accuracy of the simulation. The study is followed by a parametric study that investigates the geometric effects of the heat exchanger and air channel, as well as the airflow rate, on the overall performance of the PVT system. It is observed that the utilization of GM plates significantly reduces the average PV panel temperature (with a maximum of 28 ℃ reduction) and enhances the convective heat transfer coefficient in the air channel, the electrical and thermal efficiencies by approximately 164%, 16.1%, and 50%, respectively, when compared to a flat plate PVT collector. The results demonstrate that the proposed PVT collector effectively compensates for the pressure drops and excess fan power consumption at low Reynolds numbers due to the GM heat exchanger, resulting in higher overall system efficiency. The optimal configuration for the proposed PVT system is achieved by employing a low airflow rate, a narrow air channel, and GM spikes of the largest size available.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.