Ziyi Wang , Yue Yuan , Xiang Zhang , Bin Zeng , Chun-Lin Wang
{"title":"Experimental study on high-cycle fatigue performance of laser cladding additively manufactured 316L stainless steel","authors":"Ziyi Wang , Yue Yuan , Xiang Zhang , Bin Zeng , Chun-Lin Wang","doi":"10.1016/j.conbuildmat.2024.139214","DOIUrl":null,"url":null,"abstract":"<div><div>Laser cladding (LC) technology has garnered significant attention for its application in the repair of corrosion damage in steel structures. However, research on the high-cycle fatigue performance of LC materials remains limited. This study employed 316L stainless steel powder to produce LC specimens and conducted uniaxial tensile<img>tensile high-cycle fatigue tests to explore various laser deposition directions and surface roughnesses. The resulting <em>S<img>N</em> curves provide insights into the high-cycle fatigue behaviour of LC materials. Additionally, SEM images were utilized to analyse the fatigue failure fracture characteristics. The experimental results reveal that cladding materials deposited parallel to the loading direction exhibit superior high-cycle fatigue performance. Fatigue fractures in the specimens generally originate from laser fusion defects, which not only reduce the lifespan of the specimen but also influence the failure location. Fatigue failure assessments of the laser-cladded materials were conducted via equivalent life diagrams, which revealed a high degree of correlation with the actual failure conditions. Existing fatigue design curves for base materials can be applied to the high-cycle fatigue performance design of laser-cladded 316L stainless steel, demonstrating a performance that surpasses the average level of steel butt welds.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"455 ","pages":"Article 139214"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824043563","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser cladding (LC) technology has garnered significant attention for its application in the repair of corrosion damage in steel structures. However, research on the high-cycle fatigue performance of LC materials remains limited. This study employed 316L stainless steel powder to produce LC specimens and conducted uniaxial tensiletensile high-cycle fatigue tests to explore various laser deposition directions and surface roughnesses. The resulting SN curves provide insights into the high-cycle fatigue behaviour of LC materials. Additionally, SEM images were utilized to analyse the fatigue failure fracture characteristics. The experimental results reveal that cladding materials deposited parallel to the loading direction exhibit superior high-cycle fatigue performance. Fatigue fractures in the specimens generally originate from laser fusion defects, which not only reduce the lifespan of the specimen but also influence the failure location. Fatigue failure assessments of the laser-cladded materials were conducted via equivalent life diagrams, which revealed a high degree of correlation with the actual failure conditions. Existing fatigue design curves for base materials can be applied to the high-cycle fatigue performance design of laser-cladded 316L stainless steel, demonstrating a performance that surpasses the average level of steel butt welds.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.