Abdelkrim Benmehel , Salaheddine Chabab , Arthur Lucas Do Nascimento Rocha , Michael Chepy , Tarik Kousksou
{"title":"PEM water electrolyzer modeling: Issues and reflections","authors":"Abdelkrim Benmehel , Salaheddine Chabab , Arthur Lucas Do Nascimento Rocha , Michael Chepy , Tarik Kousksou","doi":"10.1016/j.ecmx.2024.100738","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, water electrolysis is widely recognized as a crucial step in the transition towards a hydrogen-based economy. Several technologies are available for water electrolysis, and polymer electrolyte membrane (PEM) water electrolyzer offers numerous benefits such as high efficiency, quick response to fluctuations in renewable energy sources, capability to function under high pressure, modular design, ability to handle high current density, and production of high-purity hydrogen with minimal water usage. Numerous modeling methods have been developed in the research literature to describe the operation and performance of PEM electroyzers. Each model has its own advantages and limitations, and is only valid under certain assumptions and running conditions. This article aims to provide an in-depth review of the main factors affecting the performance of PEM technology, as well as provides a comprehensive analysis of PEM system modeling, covering different thermodynamic, electrochemical, energy, momentum, and mass models, and finishing with the physical modeling challenges for PEM technology.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100738"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, water electrolysis is widely recognized as a crucial step in the transition towards a hydrogen-based economy. Several technologies are available for water electrolysis, and polymer electrolyte membrane (PEM) water electrolyzer offers numerous benefits such as high efficiency, quick response to fluctuations in renewable energy sources, capability to function under high pressure, modular design, ability to handle high current density, and production of high-purity hydrogen with minimal water usage. Numerous modeling methods have been developed in the research literature to describe the operation and performance of PEM electroyzers. Each model has its own advantages and limitations, and is only valid under certain assumptions and running conditions. This article aims to provide an in-depth review of the main factors affecting the performance of PEM technology, as well as provides a comprehensive analysis of PEM system modeling, covering different thermodynamic, electrochemical, energy, momentum, and mass models, and finishing with the physical modeling challenges for PEM technology.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.