3D Head Pose Estimation via Normal Maps: A Generalized Solution for Depth Image, Point Cloud, and Mesh

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-10-13 DOI:10.1002/aisy.202400159
Jiang Wu, Hua Chen
{"title":"3D Head Pose Estimation via Normal Maps: A Generalized Solution for Depth Image, Point Cloud, and Mesh","authors":"Jiang Wu,&nbsp;Hua Chen","doi":"10.1002/aisy.202400159","DOIUrl":null,"url":null,"abstract":"<p>Head pose estimation plays a crucial role in various applications, including human–machine interaction, autonomous driving systems, and 3D reconstruction. Current methods address the problem primarily from a 2D perspective, which limits the efficient utilization of 3D information. Herein, a novel approach, called pose orientation-aware network (POANet), which leverages normal maps for orientation information embedding, providing abundant and robust head pose information, is introduced. POANet incorporates the axial signal perception module and the rotation matrix perception module, these lightweight modules make the approach achieve state-of-the-art (SOTA) performance with few computational costs. This method can directly analyze various topological 3D data without extensive preprocessing. For depth images, POANet outperforms existing methods on the Biwi Kinect head pose dataset, reducing the mean absolute error (MAE) by ≈30% compared to the SOTA methods. POANet is the first method to perform rigid head registration in a landmark-free manner. It also incorporates few-shot learning capabilities and achieves an MAE of about <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>°</mo>\n </mrow>\n <annotation>$1^{\\circ}$</annotation>\n </semantics></math> on the Headspace dataset. These features make POANet a superior alternative to traditional generalized Procrustes analysis for mesh data processing, offering enhanced convenience for human phenotype studies.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400159","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Head pose estimation plays a crucial role in various applications, including human–machine interaction, autonomous driving systems, and 3D reconstruction. Current methods address the problem primarily from a 2D perspective, which limits the efficient utilization of 3D information. Herein, a novel approach, called pose orientation-aware network (POANet), which leverages normal maps for orientation information embedding, providing abundant and robust head pose information, is introduced. POANet incorporates the axial signal perception module and the rotation matrix perception module, these lightweight modules make the approach achieve state-of-the-art (SOTA) performance with few computational costs. This method can directly analyze various topological 3D data without extensive preprocessing. For depth images, POANet outperforms existing methods on the Biwi Kinect head pose dataset, reducing the mean absolute error (MAE) by ≈30% compared to the SOTA methods. POANet is the first method to perform rigid head registration in a landmark-free manner. It also incorporates few-shot learning capabilities and achieves an MAE of about 1 ° $1^{\circ}$ on the Headspace dataset. These features make POANet a superior alternative to traditional generalized Procrustes analysis for mesh data processing, offering enhanced convenience for human phenotype studies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过法线贴图估计 3D 头部姿势:深度图像、点云和网格的通用解决方案
头部姿态估计在人机交互、自动驾驶系统和三维重建等各种应用中发挥着至关重要的作用。目前的方法主要从二维角度解决这一问题,这限制了对三维信息的有效利用。本文介绍了一种名为 "姿态方位感知网络(POANet)"的新方法,它利用法线图进行方位信息嵌入,提供了丰富而稳健的头部姿态信息。POANet 包含轴向信号感知模块和旋转矩阵感知模块,这些轻量级模块使该方法以较低的计算成本实现了最先进的(SOTA)性能。这种方法可以直接分析各种拓扑三维数据,而无需进行大量预处理。对于深度图像,POANet 在 Biwi Kinect 头部姿态数据集上的表现优于现有方法,与 SOTA 方法相比,平均绝对误差(MAE)降低了≈30%。POANet 是第一种以无地标方式执行刚性头部配准的方法。它还结合了少量学习功能,并在 Headspace 数据集上实现了约 1 ° $1^{\circ}$ 的 MAE。这些特点使 POANet 成为网格数据处理中传统广义 Procrustes 分析的优越替代方案,为人类表型研究提供了更大的便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1