Development of Flexure-Based Supernumerary Robotic Finger for Hand Function Augmentation

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-06-19 DOI:10.1002/aisy.202400131
Junmo Yang, Youngrae Kim, Jisu Kim, Seunghyun Lim, Jingon Yoon, Dongwon Yun
{"title":"Development of Flexure-Based Supernumerary Robotic Finger for Hand Function Augmentation","authors":"Junmo Yang,&nbsp;Youngrae Kim,&nbsp;Jisu Kim,&nbsp;Seunghyun Lim,&nbsp;Jingon Yoon,&nbsp;Dongwon Yun","doi":"10.1002/aisy.202400131","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a flexure-based supernumerary robotic finger (FBSF) inspired by the proportions of the human thumb, aiming to overcome existing limitations in robotic finger design. In pursuit of seamless cooperation with the user's hand, human finger proportions are replicated. Finite element analysis of all five fingers indicates that the thumb-mimicking configuration offers the largest workspace and bending angle. The FBSF, featuring a polycarbonate paired crossed flexural hinge structure and high impact polystyrene links, closely mirrors the human thumb. Weighing 59 g (main body) and 170 g (control box), the FBSF enables user-driven control and decoupled actuation based on user intent, utilizing the electromyographic signal of the extensor carpi ulnaris via isometric contractions. An experimental protocol, including task blocks (releasing, clenching), confirms the FBSF's responsiveness to user intentions. When utilizing FBSF, it has been verified using a motion capture camera system that it is possible to extend the existing hand workspace by approximately 29.72%. Performance tests demonstrate the FBSF's capability to grasp various objects and assist in tasks, with a maximum load-bearing capacity of 2.6 kg experimentally verified. This study demonstrates the potential of the developed FBSF to augment hand functionality in diverse applications.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400131","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a flexure-based supernumerary robotic finger (FBSF) inspired by the proportions of the human thumb, aiming to overcome existing limitations in robotic finger design. In pursuit of seamless cooperation with the user's hand, human finger proportions are replicated. Finite element analysis of all five fingers indicates that the thumb-mimicking configuration offers the largest workspace and bending angle. The FBSF, featuring a polycarbonate paired crossed flexural hinge structure and high impact polystyrene links, closely mirrors the human thumb. Weighing 59 g (main body) and 170 g (control box), the FBSF enables user-driven control and decoupled actuation based on user intent, utilizing the electromyographic signal of the extensor carpi ulnaris via isometric contractions. An experimental protocol, including task blocks (releasing, clenching), confirms the FBSF's responsiveness to user intentions. When utilizing FBSF, it has been verified using a motion capture camera system that it is possible to extend the existing hand workspace by approximately 29.72%. Performance tests demonstrate the FBSF's capability to grasp various objects and assist in tasks, with a maximum load-bearing capacity of 2.6 kg experimentally verified. This study demonstrates the potential of the developed FBSF to augment hand functionality in diverse applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发用于增强手部功能的基于挠性的编外机器人手指
本研究受人类拇指比例的启发,介绍了一种基于挠曲的编外机器人手指(FBSF),旨在克服现有机器人手指设计的局限性。为了实现与用户手部的无缝配合,该产品复制了人类手指的比例。对所有五根手指的有限元分析表明,模仿拇指的配置提供了最大的工作空间和弯曲角度。FBSF 采用聚碳酸酯配对交叉挠性铰链结构和高抗冲聚苯乙烯链接,与人类的拇指十分相似。FBSF 重量为 59 克(主体)和 170 克(控制盒),可根据用户意图,利用伸拇肌的肌电信号,通过等长收缩实现用户驱动控制和解耦驱动。包括任务块(释放、紧握)在内的实验方案证实了 FBSF 对用户意图的响应能力。使用 FBSF 时,使用动作捕捉摄像系统验证了可以将现有的手部工作空间扩展约 29.72%。性能测试表明,FBSF 能够抓取各种物体并协助完成任务,实验验证的最大承重能力为 2.6 公斤。这项研究证明了所开发的 FBSF 在各种应用中增强手部功能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1