Fangshun Zhu, Suyuan Zhang, Qingfeng Zhang, Kuanjie Ma, Jun Wu, Yurong Cai
{"title":"Defect-Rich In2S3/CoS2 Heterostructure for Rapid Storage of Sodium Ions","authors":"Fangshun Zhu, Suyuan Zhang, Qingfeng Zhang, Kuanjie Ma, Jun Wu, Yurong Cai","doi":"10.1016/j.electacta.2024.145383","DOIUrl":null,"url":null,"abstract":"Aiming to accelerate sodium-ion transport kinetics and improve electrochemical cyclability of batteries, an In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> bimetallic sulfide heterostructure was synthesized as anodes of sodium-ion batteries (SIBs) in this paper by a feasible ion exchange and subsequent hydrothermal vulcanization technique based on a cobalt metal-organic skeleton (ZIF-67) precursor. As-prepared In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite exhibited an excellent rate capability of 453.8 mAh g<sup>-1</sup> at 10 A g<sup>-1</sup> and outstanding cyclability of 464.06 mAh g<sup>-1</sup> after 600 cycles at 2 A g<sup>-1</sup>. The built-in electric filed between heterogeneous interface of In<sub>2</sub>S<sub>3</sub> and CoS<sub>2</sub> plays a dominant contribution on improvement of electronic conductivity and charge transfer kinetics. Beyond that abundant defects derived from ion exchange and nanocrystallization of composite particles also have a positive synergistic effect on inducing additional active centers for adsorption of Na<sup>+</sup> and shortening ion transport distance for further accelerating reaction kinetics. Based on exploring conversion and alloying mechanism of In<sub>2</sub>S<sub>3</sub>/CoS<sub>2</sub> composite via <em>ex situ</em> XRD and TEM, high-performance SIBs with heterostructure bimetallic sulfide anodes may be a prospective strategy.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"248 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145383","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming to accelerate sodium-ion transport kinetics and improve electrochemical cyclability of batteries, an In2S3/CoS2 bimetallic sulfide heterostructure was synthesized as anodes of sodium-ion batteries (SIBs) in this paper by a feasible ion exchange and subsequent hydrothermal vulcanization technique based on a cobalt metal-organic skeleton (ZIF-67) precursor. As-prepared In2S3/CoS2 composite exhibited an excellent rate capability of 453.8 mAh g-1 at 10 A g-1 and outstanding cyclability of 464.06 mAh g-1 after 600 cycles at 2 A g-1. The built-in electric filed between heterogeneous interface of In2S3 and CoS2 plays a dominant contribution on improvement of electronic conductivity and charge transfer kinetics. Beyond that abundant defects derived from ion exchange and nanocrystallization of composite particles also have a positive synergistic effect on inducing additional active centers for adsorption of Na+ and shortening ion transport distance for further accelerating reaction kinetics. Based on exploring conversion and alloying mechanism of In2S3/CoS2 composite via ex situ XRD and TEM, high-performance SIBs with heterostructure bimetallic sulfide anodes may be a prospective strategy.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.