Weliton Silva Fonseca, Thibault Rafaïdeen, Hamza Kahri, Têko W. Napporn, Christophe Coutanceau
{"title":"Glucose electrooxidation on carbon supported NiAu electrocatalysts","authors":"Weliton Silva Fonseca, Thibault Rafaïdeen, Hamza Kahri, Têko W. Napporn, Christophe Coutanceau","doi":"10.1016/j.electacta.2024.145367","DOIUrl":null,"url":null,"abstract":"NiAu/C nanomaterials are synthesised using a wet chemistry method with targeted Au atomic ratios of 10%, 20% and 30%. Physicochemical characterisations indicate that the materials have mean compositions close to the nominal ones but ca. 20 at% Au richer in average than expected (Au ratios of 13.6 at%, 23.1 at% and 35.9 at%, respectively). The NiAu/C materials are composed of Au-rich spherical-like Janus particles of several tenths nm and of a phase of very small Ni-rich nanoparticles and Ni(OH<sub>2</sub>) clusters. The electrochemical measurements in a 0.1 M NaOH/0.1 M glucose electrolyte indicate that the NiAu20/C catalyst is the most active for the glucose oxidation reaction, leading to a mass activity at +0.6 V vs RHE more than 1.5 times higher than that with a pure Au/C catalyst, although the Au content is almost 5 times lower. The chronoamperometry measurements for 900 s at +0.6 V vs RHE confirm the activity gain with the NiAu20/C catalyst. The electrolysis measurement at a cell voltage of +Z+0.6 V for 6 hours shows that the NiAu20/C catalyst is selective towards the production of gluconic acid, with a faradaic efficiency higher than 100%, indicating the occurrence of a 1-electron reaction with anodic hydrogen coproduction. At +0.8 V, the faradaic efficiency is lower than 100 %, indicating the formation of other products than gluconic acid, but at a very low extent (not detectable by HPLC) guarantying a very high selectivity towards gluconic acid.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"50 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145367","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
NiAu/C nanomaterials are synthesised using a wet chemistry method with targeted Au atomic ratios of 10%, 20% and 30%. Physicochemical characterisations indicate that the materials have mean compositions close to the nominal ones but ca. 20 at% Au richer in average than expected (Au ratios of 13.6 at%, 23.1 at% and 35.9 at%, respectively). The NiAu/C materials are composed of Au-rich spherical-like Janus particles of several tenths nm and of a phase of very small Ni-rich nanoparticles and Ni(OH2) clusters. The electrochemical measurements in a 0.1 M NaOH/0.1 M glucose electrolyte indicate that the NiAu20/C catalyst is the most active for the glucose oxidation reaction, leading to a mass activity at +0.6 V vs RHE more than 1.5 times higher than that with a pure Au/C catalyst, although the Au content is almost 5 times lower. The chronoamperometry measurements for 900 s at +0.6 V vs RHE confirm the activity gain with the NiAu20/C catalyst. The electrolysis measurement at a cell voltage of +Z+0.6 V for 6 hours shows that the NiAu20/C catalyst is selective towards the production of gluconic acid, with a faradaic efficiency higher than 100%, indicating the occurrence of a 1-electron reaction with anodic hydrogen coproduction. At +0.8 V, the faradaic efficiency is lower than 100 %, indicating the formation of other products than gluconic acid, but at a very low extent (not detectable by HPLC) guarantying a very high selectivity towards gluconic acid.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.