Halogen-free solvent processed organic solar sub-modules (≈55 cm2) with 14.70% efficiency by controlling the morphology of alkyl chain engineered polymer donor
Thavamani Gokulnath, Hyerin Kim, Donghyun Song, Ho-Yeol Park, Je-Sung Jee, Young Yong Kim, Jinhwan Yoon, Kakaraparthi Kranthiraja, Sung-Ho Jin
{"title":"Halogen-free solvent processed organic solar sub-modules (≈55 cm2) with 14.70% efficiency by controlling the morphology of alkyl chain engineered polymer donor","authors":"Thavamani Gokulnath, Hyerin Kim, Donghyun Song, Ho-Yeol Park, Je-Sung Jee, Young Yong Kim, Jinhwan Yoon, Kakaraparthi Kranthiraja, Sung-Ho Jin","doi":"10.1002/eom2.12496","DOIUrl":null,"url":null,"abstract":"<p>Goals of high efficiency, morphological analysis, and the ability to produce organic solar cell (OSC) sub-modules using halogen-free solvents are demanding. In this study, a robust conjugated polymer with thienothiophene π-spacer with pendant alkyl side chain (NapBDT-C12) was synthesized and used to fabricate sub-modules. Excellent efficiencies were demonstrated by a NapBDT-C12 integrated ternary blend, which was used to produce stable small-area-to-sub-module devices using <i>O</i>-xylene. The efficiency of the NapBDT-C12 added small-area ternary devices (PM6:NapBDT-C12:L8-BO) was 18.71%. Owing to the controlled homogeneity of the blend with favorable nanoscale film morphology, enhanced carrier mobilities, and exciton dissociation/splitting properties, contributed to the efficiencies of small-area-to-sub-module OSCs. Moreover, a 55 cm<sup>2</sup> sub-module with an efficiency of 14.69% was accomplished by bar coating using <i>O</i>-xylene under ambient conditions. This study displays the potential of a ternary blend based OSC device to produce high efficiency scalable sub-modules at ambient conditions.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12496","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Goals of high efficiency, morphological analysis, and the ability to produce organic solar cell (OSC) sub-modules using halogen-free solvents are demanding. In this study, a robust conjugated polymer with thienothiophene π-spacer with pendant alkyl side chain (NapBDT-C12) was synthesized and used to fabricate sub-modules. Excellent efficiencies were demonstrated by a NapBDT-C12 integrated ternary blend, which was used to produce stable small-area-to-sub-module devices using O-xylene. The efficiency of the NapBDT-C12 added small-area ternary devices (PM6:NapBDT-C12:L8-BO) was 18.71%. Owing to the controlled homogeneity of the blend with favorable nanoscale film morphology, enhanced carrier mobilities, and exciton dissociation/splitting properties, contributed to the efficiencies of small-area-to-sub-module OSCs. Moreover, a 55 cm2 sub-module with an efficiency of 14.69% was accomplished by bar coating using O-xylene under ambient conditions. This study displays the potential of a ternary blend based OSC device to produce high efficiency scalable sub-modules at ambient conditions.