{"title":"MXene Electrocatalysts: Transformative Approaches in Hydrogen Production with Alternative Anode Reactions.","authors":"Sreenisa Sundarraj, Neshanth Vadivel, Arun Prasad Murthy, Jayaraman Theerthagiri, Myong Yong Choi","doi":"10.1002/smll.202407120","DOIUrl":null,"url":null,"abstract":"<p><p>Water electrolyzer is crucial for producing clean hydrogen, but the traditional approach faces challenges owing to the oxygen evolution reaction (OER) slow kinetics at the anode. Hybrid water splitting replaces the OER with the oxidation of an organic molecule to enhance hydrogen production along with value-added products. The scarcity of affordable and highly effective catalysts remains a major challenge. MXene, a 2D nanomaterial, has gained substantial attention for its enviable properties, for instance high conductivity, hydrophilicity, and substantial surface area. This review discusses experimental methods for synthesizing MXene and MXene-based nanocomposites. Furthermore, the small molecules oxidation such as benzyl alcohol, methanol, ethanol, urea, hydrazine, furfural, and formic acid as alternatives to the oxygen evolution reaction is examined. Finally, an understanding of imminent research and the development of MXene-associated materials in electrocatalytic applications are presented.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2407120"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407120","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Water electrolyzer is crucial for producing clean hydrogen, but the traditional approach faces challenges owing to the oxygen evolution reaction (OER) slow kinetics at the anode. Hybrid water splitting replaces the OER with the oxidation of an organic molecule to enhance hydrogen production along with value-added products. The scarcity of affordable and highly effective catalysts remains a major challenge. MXene, a 2D nanomaterial, has gained substantial attention for its enviable properties, for instance high conductivity, hydrophilicity, and substantial surface area. This review discusses experimental methods for synthesizing MXene and MXene-based nanocomposites. Furthermore, the small molecules oxidation such as benzyl alcohol, methanol, ethanol, urea, hydrazine, furfural, and formic acid as alternatives to the oxygen evolution reaction is examined. Finally, an understanding of imminent research and the development of MXene-associated materials in electrocatalytic applications are presented.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.