Fatemeh Baahmadi, Hamid Abbasi-Asl, Mehrorang Ghaedi, Mohammad Mehdi Sabzehmeidani, Ardeshir Shokrollahi
{"title":"High-performance cellulose acetate fibers-loaded Alca layered double oxide adsorbents towards efficient elimination of anionic pollutants: Mechanism adsorption and RSM-CCD approach.","authors":"Fatemeh Baahmadi, Hamid Abbasi-Asl, Mehrorang Ghaedi, Mohammad Mehdi Sabzehmeidani, Ardeshir Shokrollahi","doi":"10.1016/j.ijbiomac.2024.137788","DOIUrl":null,"url":null,"abstract":"<p><p>In the present research, we investigate Congo red (CR) removal by layered double hydroxide and oxide AlCa on cellulose acetate (CA) fiber as anion-adsorbents in aqueous solution. The as-prepared composite was characterized by FE-SEM, XRD, FTIR, EDS-mapping and BET-BJH analyses. The CR adsorption ability on AlCa LDH/CA and AlCa LDO/CA adsorbents was evaluated. The removal property, dye adsorption and filtration properties of the AlCa LDO/CA composite were studied for removal CR based on central composite design (CCD) technique through investigating operational variables (temperature, adsorbent dosage, pH and contact time). The fabricated AlCa LDO/CA composite indicates a high removal efficiency up to 98.7 % for the CR removal in the 16 min. The data of the adsorption equilibrium were described by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms, and exhibited that AlCa LDH/CA fibers and AlCa LDO/CA fibers followed a pseudo-second-order kinetic model and Langmuir isotherm. The stability of Al-Ca-LDO/CA fibers nanocomposite was indicated that it was >95 % after eight cycles for removal of CR in the batch method on stirrer. The findings illustrated that appropriate AlCa LDO/CA fiber could be an efficient technique for CR elimination.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137788"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137788","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present research, we investigate Congo red (CR) removal by layered double hydroxide and oxide AlCa on cellulose acetate (CA) fiber as anion-adsorbents in aqueous solution. The as-prepared composite was characterized by FE-SEM, XRD, FTIR, EDS-mapping and BET-BJH analyses. The CR adsorption ability on AlCa LDH/CA and AlCa LDO/CA adsorbents was evaluated. The removal property, dye adsorption and filtration properties of the AlCa LDO/CA composite were studied for removal CR based on central composite design (CCD) technique through investigating operational variables (temperature, adsorbent dosage, pH and contact time). The fabricated AlCa LDO/CA composite indicates a high removal efficiency up to 98.7 % for the CR removal in the 16 min. The data of the adsorption equilibrium were described by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms, and exhibited that AlCa LDH/CA fibers and AlCa LDO/CA fibers followed a pseudo-second-order kinetic model and Langmuir isotherm. The stability of Al-Ca-LDO/CA fibers nanocomposite was indicated that it was >95 % after eight cycles for removal of CR in the batch method on stirrer. The findings illustrated that appropriate AlCa LDO/CA fiber could be an efficient technique for CR elimination.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.