Zicheng Chen, Kai Xu, Guangyuan Fan, Shuang Ji, Lanhe Zhang
{"title":"Fabrication of hydrophobic cellulosic paper via physical vapor deposition of alkenyl succinic anhydride.","authors":"Zicheng Chen, Kai Xu, Guangyuan Fan, Shuang Ji, Lanhe Zhang","doi":"10.1016/j.ijbiomac.2024.137792","DOIUrl":null,"url":null,"abstract":"<p><p>While plant fibers are abundant and biodegradable natural polymers, their high hydrophilicity often limits their applicability. To broaden the applicability of plant fiber materials across diverse fields, the present study employed cellulosic paper as a substrate and alkenyl succinic anhydride (ASA) as a low surface free energy material to fabricate a series of hydrophobic cellulosic papers (ASAP, ASA-P@Si, ASA-P@Ca, and ASA-P@Ti) through surface coating and physical vapor deposition of ASA. The results demonstrated that, in comparison to uncoated cellulosic paper, the coated variants exhibited significantly improved hydrophobicity. Notably, ASA-P@Si demonstrated superior hydrophobic performance with a contact angle of 140.90° and a sizing degree of 7.2 s, thereby meeting the requirements for specific fine paper grades. In contrast to the traditional ASA internal sizing process, the method in this study necessitates only approximately one-tenth of the conventional ASA internal sizing agent to achieve or even exceed the hydrophobic properties of paper attainable with ASA inter sizing process. Furthermore, the mechanism through which hydrophobic properties are conferred to paper can be elucidated by its surface roughness and low surface free energy, distinguishing it from the traditional ASA internal sizing approach.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137792"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137792","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While plant fibers are abundant and biodegradable natural polymers, their high hydrophilicity often limits their applicability. To broaden the applicability of plant fiber materials across diverse fields, the present study employed cellulosic paper as a substrate and alkenyl succinic anhydride (ASA) as a low surface free energy material to fabricate a series of hydrophobic cellulosic papers (ASAP, ASA-P@Si, ASA-P@Ca, and ASA-P@Ti) through surface coating and physical vapor deposition of ASA. The results demonstrated that, in comparison to uncoated cellulosic paper, the coated variants exhibited significantly improved hydrophobicity. Notably, ASA-P@Si demonstrated superior hydrophobic performance with a contact angle of 140.90° and a sizing degree of 7.2 s, thereby meeting the requirements for specific fine paper grades. In contrast to the traditional ASA internal sizing process, the method in this study necessitates only approximately one-tenth of the conventional ASA internal sizing agent to achieve or even exceed the hydrophobic properties of paper attainable with ASA inter sizing process. Furthermore, the mechanism through which hydrophobic properties are conferred to paper can be elucidated by its surface roughness and low surface free energy, distinguishing it from the traditional ASA internal sizing approach.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.