{"title":"Recycling the sediment of cotton spinning effluent for rigid polyurethane foams.","authors":"Wanqi Feng, Sixuan Wang, Yiqun Liu, Mengqi Shi, Deyin Xie, Yankun Wang, Yongjie Jiang, Hui Cao, Di Cai, Jianbo Zhao","doi":"10.1016/j.ijbiomac.2024.137787","DOIUrl":null,"url":null,"abstract":"<p><p>Sediment from the effluent of cotton spinning industry was valorized as the renewable bio-based polyols substitute for the rigid polyurethane (RPUFs), targeting to generate the economic and environmental benefits. Before reaction with the isocyanate, the sediment was functionalized by hydroxymethylation, in order to increase the density of the active hydroxyl groups for higher reactivity. The structural characterization results of the functionalized sediment indicated the material exhibited narrow molecular weight distribution, high hydroxyl groups content, and highly aromatic skeleton, which can be qualified as the renewable polyols for the RPUFs. In the crosslinking process, the effect of the polyols substitute rate of the sediments on the physio-chemical properties and the thermo-resistant performances of the resulting RPUFs was investigated. Specifically, in the group with 30 wt% of polyols substitution, the received foam exhibited comprehensive superiorities in compressive strength (0.58 MPa), apparent density (58 kg m<sup>-3</sup>), and thermo-conductivity (0.032 W m<sup>-1</sup> K<sup>-1</sup>). Attractively, the RPUFs also exhibited good flame retardancy. The burning time can be extended by 30 % compared to the control group that without the sediment's substitution. Moreover, the RPUF also possessed good degradability, allowing for harmless recycling. The current work provided a potential route for the valorization of the hazardous waste effluent from the cotton spinning industry.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137787"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137787","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sediment from the effluent of cotton spinning industry was valorized as the renewable bio-based polyols substitute for the rigid polyurethane (RPUFs), targeting to generate the economic and environmental benefits. Before reaction with the isocyanate, the sediment was functionalized by hydroxymethylation, in order to increase the density of the active hydroxyl groups for higher reactivity. The structural characterization results of the functionalized sediment indicated the material exhibited narrow molecular weight distribution, high hydroxyl groups content, and highly aromatic skeleton, which can be qualified as the renewable polyols for the RPUFs. In the crosslinking process, the effect of the polyols substitute rate of the sediments on the physio-chemical properties and the thermo-resistant performances of the resulting RPUFs was investigated. Specifically, in the group with 30 wt% of polyols substitution, the received foam exhibited comprehensive superiorities in compressive strength (0.58 MPa), apparent density (58 kg m-3), and thermo-conductivity (0.032 W m-1 K-1). Attractively, the RPUFs also exhibited good flame retardancy. The burning time can be extended by 30 % compared to the control group that without the sediment's substitution. Moreover, the RPUF also possessed good degradability, allowing for harmless recycling. The current work provided a potential route for the valorization of the hazardous waste effluent from the cotton spinning industry.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.