Yungang Hu, Yiwen Wang, Lin Zhi, Lu Yu, Xiaohua Hu, Yuming Shen, Weili Du
{"title":"SDC4 protein action and related key genes in nonhealing diabetic foot ulcers based on bioinformatics analysis and machine learning.","authors":"Yungang Hu, Yiwen Wang, Lin Zhi, Lu Yu, Xiaohua Hu, Yuming Shen, Weili Du","doi":"10.1016/j.ijbiomac.2024.137789","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic foot ulcer (DFU) is a complication associated with diabetes characterised by high morbidity, disability, and mortality, involving chronic inflammation and infiltration of multiple immune cells. We aimed to identify the critical genes in nonhealing DFUs using single-cell RNA sequencing, transcriptomic analysis and machine learning. The GSE165816, GSE134431, and GSE143735 datasets were downloaded from the GEO database. We processed and screened the datasets, and identified the cell subsets. Each cell subtype was annotated, and the predominant cell types contributing to the disease were analysed. Key genes were identified using the LASSO regression algorithm, followed by verification of model accuracy and stability. We investigated the molecular mechanisms and changes in signalling pathways associated with this disease using immunoinfiltration analysis, GSEA, and GSVA. Through scRNA-seq analysis, we identified 12 distinct cell clusters and determined that the basalKera cell type was important in disease development. A high accuracy and stability prediction model was constructed incorporating five key genes (TXN, PHLDA2, RPLP1, MT1G, and SDC4). Among these five genes, SDC4 has the strongest correlation and plays an important role in the development of DFU. Our study identified SDC4 significantly associated with nonhealing DFU development, potentially serving as new prevention and treatment strategies for DFU.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137789"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137789","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic foot ulcer (DFU) is a complication associated with diabetes characterised by high morbidity, disability, and mortality, involving chronic inflammation and infiltration of multiple immune cells. We aimed to identify the critical genes in nonhealing DFUs using single-cell RNA sequencing, transcriptomic analysis and machine learning. The GSE165816, GSE134431, and GSE143735 datasets were downloaded from the GEO database. We processed and screened the datasets, and identified the cell subsets. Each cell subtype was annotated, and the predominant cell types contributing to the disease were analysed. Key genes were identified using the LASSO regression algorithm, followed by verification of model accuracy and stability. We investigated the molecular mechanisms and changes in signalling pathways associated with this disease using immunoinfiltration analysis, GSEA, and GSVA. Through scRNA-seq analysis, we identified 12 distinct cell clusters and determined that the basalKera cell type was important in disease development. A high accuracy and stability prediction model was constructed incorporating five key genes (TXN, PHLDA2, RPLP1, MT1G, and SDC4). Among these five genes, SDC4 has the strongest correlation and plays an important role in the development of DFU. Our study identified SDC4 significantly associated with nonhealing DFU development, potentially serving as new prevention and treatment strategies for DFU.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.