Desu Gayathri Niharika, Punam Salaria, M Amarendar Reddy
{"title":"Integrated computational approaches for identification of potent pyrazole-based glycogen synthase kinase-3β (GSK-3β) inhibitors: 3D-QSAR, virtual screening, docking, MM/GBSA, EC, MD simulation studies.","authors":"Desu Gayathri Niharika, Punam Salaria, M Amarendar Reddy","doi":"10.1007/s11030-024-11026-0","DOIUrl":null,"url":null,"abstract":"<p><p>Glycogen synthase kinase-3β (GSK-3β) has emerged as a crucial target due to its substantial contribution in various cellular processes. Dysfunctional GSK-3β activity can lead to ion channel disturbances, sustain abnormal excitability, and contribute to the pathogenesis of epilepsy and other GSK-3β-related disorders. A set of 82 pyrazole analogs was utilized to study its structural features using a three-dimensional quantitative structure-activity relationship (3D-QSAR), virtual screening, molecular docking, and molecular dynamics. The QSAR model, validated using internal and external methods, demonstrated robustness with a high correlation coefficient r<sup>2</sup><sub>training</sub> = 0.99, cross-validation coefficient q<sup>2</sup> = 0.79, r<sup>2</sup><sub>test</sub> = 0.69, and r<sup>2</sup><sub>external</sub> = 0.74. The \"Average of Actives\" in the Activity Atlas model identified 17 molecules as active. Subsequent pharmacophore-based virtual screening of 17 actives yielded 70 compounds, which were selected as the prediction set to determine the potential GSK-3β inhibitors. Docking studies pinpointed compound P66 as the promising lead compound, with a docking score of - 10.555 kcal/mol. These findings were further supported by electrostatic potential (ESP), electrostatic complementarity (EC), and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) analyses. Furthermore, a 500 ns molecular dynamics (MD) simulation confirmed the structural and conformational stability of the lead complex throughout the simulation period. As a result, this study suggests that compound P66 holds the potential to be a potent lead candidate for the inhibition of GSK-3β, offering a novel therapeutic approach for GSK-3β related disorders, including epilepsy.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11026-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Glycogen synthase kinase-3β (GSK-3β) has emerged as a crucial target due to its substantial contribution in various cellular processes. Dysfunctional GSK-3β activity can lead to ion channel disturbances, sustain abnormal excitability, and contribute to the pathogenesis of epilepsy and other GSK-3β-related disorders. A set of 82 pyrazole analogs was utilized to study its structural features using a three-dimensional quantitative structure-activity relationship (3D-QSAR), virtual screening, molecular docking, and molecular dynamics. The QSAR model, validated using internal and external methods, demonstrated robustness with a high correlation coefficient r2training = 0.99, cross-validation coefficient q2 = 0.79, r2test = 0.69, and r2external = 0.74. The "Average of Actives" in the Activity Atlas model identified 17 molecules as active. Subsequent pharmacophore-based virtual screening of 17 actives yielded 70 compounds, which were selected as the prediction set to determine the potential GSK-3β inhibitors. Docking studies pinpointed compound P66 as the promising lead compound, with a docking score of - 10.555 kcal/mol. These findings were further supported by electrostatic potential (ESP), electrostatic complementarity (EC), and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) analyses. Furthermore, a 500 ns molecular dynamics (MD) simulation confirmed the structural and conformational stability of the lead complex throughout the simulation period. As a result, this study suggests that compound P66 holds the potential to be a potent lead candidate for the inhibition of GSK-3β, offering a novel therapeutic approach for GSK-3β related disorders, including epilepsy.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;