{"title":"Optimizing kinase and PARP inhibitor combinations through machine learning and in silico approaches for targeted brain cancer therapy.","authors":"Alireza Poustforoosh","doi":"10.1007/s11030-025-11114-9","DOIUrl":null,"url":null,"abstract":"<p><p>The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells. Some decision tree-based models were used for this purpose. The results were further evaluated using molecular docking and molecular dynamics (MD) simulation. The possibility of the hit drug combinations for crossing the Blood-brain barrier (BBB) was also examined. Based on the obtained results, the combination of niraparib, as the PARP inhibitor, and lapatinib, as the kinase inhibitor, exhibited more considerable outcomes with a remarkable model performance (accuracy of 0.915) and prediction confidence of 0.92. The protein tweety homolog 3 and BTB/POZ domain-containing protein 2 are the main targets of niraparib and lapatinib with - 10.2 and - 8.5 scores, respectively. Due to the outcomes, this drug combination can use the CAT1 transporter on the BBB surface and effectively cross the BBB. Based on the obtained results, niraparib-lapatinib can be a promising drug combination candidate for brain cancer treatment. This combination is worth to be examined by experimental investigation in vitro and in vivo.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11114-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells. Some decision tree-based models were used for this purpose. The results were further evaluated using molecular docking and molecular dynamics (MD) simulation. The possibility of the hit drug combinations for crossing the Blood-brain barrier (BBB) was also examined. Based on the obtained results, the combination of niraparib, as the PARP inhibitor, and lapatinib, as the kinase inhibitor, exhibited more considerable outcomes with a remarkable model performance (accuracy of 0.915) and prediction confidence of 0.92. The protein tweety homolog 3 and BTB/POZ domain-containing protein 2 are the main targets of niraparib and lapatinib with - 10.2 and - 8.5 scores, respectively. Due to the outcomes, this drug combination can use the CAT1 transporter on the BBB surface and effectively cross the BBB. Based on the obtained results, niraparib-lapatinib can be a promising drug combination candidate for brain cancer treatment. This combination is worth to be examined by experimental investigation in vitro and in vivo.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;