Reduction of Plasmodiophora brassicae Infection on Brassica rapa Through Host-Induced Gene Silencing of Two Secreted Genes.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2025-03-18 DOI:10.1094/PHYTO-09-23-0334-R
Hui Yang, Yihan Zhang, Yushan Zhao, Yinping Shu, Yushu Xu, Yi Liu, Junbo Du, Wenming Wang
{"title":"Reduction of <i>Plasmodiophora brassicae</i> Infection on <i>Brassica rapa</i> Through Host-Induced Gene Silencing of Two Secreted Genes.","authors":"Hui Yang, Yihan Zhang, Yushan Zhao, Yinping Shu, Yushu Xu, Yi Liu, Junbo Du, Wenming Wang","doi":"10.1094/PHYTO-09-23-0334-R","DOIUrl":null,"url":null,"abstract":"<p><p>Clubroot disease, caused by the biotrophic pathogen <i>Plasmodiophora brassicae</i>, is one of the most serious threats to cruciferous crops production worldwide. <i>P. brassicae</i> is known for rapid adaptive evolution to overcome plant resistance. The current prevention and control strategies are not effective against <i>P. brassicae.</i> Additionally, lack of genetic transformation has impeded the functional characteristic disclosure of virulence genes. In this study, we have identified two effectors, Pb48 and Pb52, that impact plant defense and are upregulated during the infection stage. To characterize the function of these virulence genes, we employed a transient method, host-induced gene silencing (HIGS). By instantaneously expressing a hairpin RNA interference construct with sequence homology to <i>P. brassicae Pb48</i> or <i>Pb52</i> in susceptible <i>Brassica rapa</i>, we successfully silenced the corresponding gene, resulting in reduced root gall size or enhanced host resistance to <i>P. brassicae.</i> Silencing <i>Pb48</i> led to a decrease in the numbers of zoosporangia within root hair and epidermal cells, and silencing either <i>Pb48</i> or <i>Pb52</i> led to downregulated expressions of cytokinin biosynthesis gene <i>IPT1</i> and auxin homeostasis <i>GH3.5</i>, which are associated with hormone regulation pathways involved in clubroot development. These findings validate HIGS as a practical tool for studying <i>P. brassicae</i> virulence genes. HIGS, by transiently expressing short interfering RNAs of <i>P. brassicae</i>, demonstrates its potential as an effective strategy against this pathogen. In the future, we can obtain durable disease resistance in susceptible host crops by developing a stable transformant.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"PHYTO09230334R"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-09-23-0334-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Clubroot disease, caused by the biotrophic pathogen Plasmodiophora brassicae, is one of the most serious threats to cruciferous crops production worldwide. P. brassicae is known for rapid adaptive evolution to overcome plant resistance. The current prevention and control strategies are not effective against P. brassicae. Additionally, lack of genetic transformation has impeded the functional characteristic disclosure of virulence genes. In this study, we have identified two effectors, Pb48 and Pb52, that impact plant defense and are upregulated during the infection stage. To characterize the function of these virulence genes, we employed a transient method, host-induced gene silencing (HIGS). By instantaneously expressing a hairpin RNA interference construct with sequence homology to P. brassicae Pb48 or Pb52 in susceptible Brassica rapa, we successfully silenced the corresponding gene, resulting in reduced root gall size or enhanced host resistance to P. brassicae. Silencing Pb48 led to a decrease in the numbers of zoosporangia within root hair and epidermal cells, and silencing either Pb48 or Pb52 led to downregulated expressions of cytokinin biosynthesis gene IPT1 and auxin homeostasis GH3.5, which are associated with hormone regulation pathways involved in clubroot development. These findings validate HIGS as a practical tool for studying P. brassicae virulence genes. HIGS, by transiently expressing short interfering RNAs of P. brassicae, demonstrates its potential as an effective strategy against this pathogen. In the future, we can obtain durable disease resistance in susceptible host crops by developing a stable transformant.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过宿主诱导的两个分泌基因沉默,减少 Plasmodiophora brassicae 对 Brassica rapa 的感染。
由生物营养型病原体黄铜疫霉(Plasmodiophora brassicae)引起的棒根病是全球十字花科作物生产面临的最严重威胁之一。众所周知,P. brassicae能快速适应进化,克服品种的抗性。当务之急是建立替代管理方法来控制 P. brassicae。在这项研究中,我们发现了两种在感染期间上调并影响植物防御的 P. brassicae 分泌蛋白。我们建立了一种在幼苗根部进行瞬时表达的方法,并证明了黄铜穗虫能从根细胞的环境中吸收物质。通过在易感芸薹属植物中表达与铜绿微囊藻效应子 Pb48 或 Pb52 序列同源的发夹式 RNAi 构建体,使用基于 RNA 干扰(RNAi)的宿主诱导基因沉默(HIGS)技术,增强了宿主的抗病性。沉默这两种效应因子后,细胞分裂素生物合成基因 IPT1 和辅助素平衡调控基因 GH3.5 的转录水平下调。这些结果表明,基于 RNAi 的效应子 HIGS 在提高作物对黄铜穗芥的抗性方面有很大的实际应用价值,并能为环境可持续农业做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Reduction of Plasmodiophora brassicae Infection on Brassica rapa Through Host-Induced Gene Silencing of Two Secreted Genes. A Novel QTL on Chromosome 7D Derived from Aegilops tauschii Confers Moderate Field Resistance to Wheat Blast. The First Molecular Characterization of Solanum Lycopersicum-Phytophthora cinnamomi Rands Phytopathosystem: The Essential Role of Pectin. Identification of Novel Basil Downy Mildew Resistance Genes Using De Novo Comparative Transcriptomics. Effect of Weather Variables on the Inoculum of Diaporthe amygdali Causal Agent of Twig Canker and Shoot Blight in Almond Orchards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1