Discovering CRISPR-Cas system with self-processing pre-crRNA capability by foundation models

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-19 DOI:10.1038/s41467-024-54365-0
Wenhui Li, Xianyue Jiang, Wuke Wang, Liya Hou, Runze Cai, Yongqian Li, Qiuxi Gu, Qinchang Chen, Peixiang Ma, Jin Tang, Menghao Guo, Guohui Chuai, Xingxu Huang, Jun Zhang, Qi Liu
{"title":"Discovering CRISPR-Cas system with self-processing pre-crRNA capability by foundation models","authors":"Wenhui Li, Xianyue Jiang, Wuke Wang, Liya Hou, Runze Cai, Yongqian Li, Qiuxi Gu, Qinchang Chen, Peixiang Ma, Jin Tang, Menghao Guo, Guohui Chuai, Xingxu Huang, Jun Zhang, Qi Liu","doi":"10.1038/s41467-024-54365-0","DOIUrl":null,"url":null,"abstract":"<p>The discovery of CRISPR-Cas systems has paved the way for advanced gene editing tools. However, traditional Cas discovery methods relying on sequence similarity may miss distant homologs and aren’t suitable for functional recognition. With protein large language models (LLMs) evolving, there is potential for Cas system modeling without extensive training data. Here, we introduce CHOOSER (Cas HOmlog Observing and SElf-processing scReening), an AI framework for alignment-free discovery of CRISPR-Cas systems with self-processing pre-crRNA capability using protein foundation models. By using CHOOSER, we identify 11 Casλ homologs, nearly doubling the known catalog. Notably, one homolog, EphcCasλ, is experimentally validated for self-processing pre-crRNA, DNA cleavage, and trans-cleavage, showing promise for CRISPR-based pathogen detection. This study highlights an innovative approach for discovering CRISPR-Cas systems with specific functions, emphasizing their potential in gene editing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"228 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54365-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of CRISPR-Cas systems has paved the way for advanced gene editing tools. However, traditional Cas discovery methods relying on sequence similarity may miss distant homologs and aren’t suitable for functional recognition. With protein large language models (LLMs) evolving, there is potential for Cas system modeling without extensive training data. Here, we introduce CHOOSER (Cas HOmlog Observing and SElf-processing scReening), an AI framework for alignment-free discovery of CRISPR-Cas systems with self-processing pre-crRNA capability using protein foundation models. By using CHOOSER, we identify 11 Casλ homologs, nearly doubling the known catalog. Notably, one homolog, EphcCasλ, is experimentally validated for self-processing pre-crRNA, DNA cleavage, and trans-cleavage, showing promise for CRISPR-based pathogen detection. This study highlights an innovative approach for discovering CRISPR-Cas systems with specific functions, emphasizing their potential in gene editing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基础模型发现具有自我处理前 crRNA 能力的 CRISPR-Cas 系统
CRISPR-Cas 系统的发现为先进的基因编辑工具铺平了道路。然而,依赖序列相似性的传统 Cas 发现方法可能会遗漏遥远的同源物,也不适合功能识别。随着蛋白质大型语言模型(LLMs)的发展,无需大量训练数据就能建立 Cas 系统模型的可能性越来越大。在这里,我们介绍了CHOOSER(Cas HOmlog Observing and SElf-processing scReening),这是一个利用蛋白质基础模型发现具有自我处理前crRNA能力的CRISPR-Cas系统的人工智能框架。通过使用 CHOOSER,我们发现了 11 个 Casλ 同源物,几乎是已知目录的两倍。值得注意的是,其中一个同源物 EphcCasλ 在自我处理前-crRNA、DNA 裂解和反式裂解方面得到了实验验证,为基于 CRISPR 的病原体检测带来了希望。这项研究强调了发现具有特定功能的CRISPR-Cas系统的创新方法,强调了它们在基因编辑方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Climate change and its influence on water systems increases the cost of electricity system decarbonization Features of membrane protein sequence direct post-translational insertion General-purpose machine-learned potential for 16 elemental metals and their alloys Autoantibodies immuno-mechanically modulate platelet contractile force and bleeding risk Schwann cell C5aR1 co-opts inflammasome NLRP1 to sustain pain in a mouse model of endometriosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1