Tailoring Na2FePO4F nanoparticles as the high-rate capability and Long-life cathode towards fast chargeable sodium-ion full batteries

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2024-11-19 DOI:10.1016/j.cej.2024.157784
Weihuang Wang, Shuhui Li, Yixin Jia, Dongqiang Cao, Rui Liu, Zheng Wang, Zicheng Xie, Lantian Zhang, Liangbing Wang
{"title":"Tailoring Na2FePO4F nanoparticles as the high-rate capability and Long-life cathode towards fast chargeable sodium-ion full batteries","authors":"Weihuang Wang, Shuhui Li, Yixin Jia, Dongqiang Cao, Rui Liu, Zheng Wang, Zicheng Xie, Lantian Zhang, Liangbing Wang","doi":"10.1016/j.cej.2024.157784","DOIUrl":null,"url":null,"abstract":"Na<sub>2</sub>FePO<sub>4</sub>F (NFPF) with two-dimensional channels for transferring Na ions is considered as the promising cathode material for high-performance sodium-ion batteries (SIBs), while the electrochemical performance in full-cell devices remains unsatisfactory. Here, we developed a method combining high-boiling organic solvents assisted colloidal synthesis (HOS-CS) and subsequent calcination for preparing 20–30 nm of NFPF nanoparticles (NPs) wrapped by conductive carbon as the efficient cathode. HOS-CS demonstrated merits in terms of high utilization of precursors, high synthetic efficiency, and uniform distribution of both sizes and composition of NPs. Impressively, the as-obtained NFPF/C/MWCNTs delivered a reversible capacity up to 118.4 mAh/g at 0.1C. As a bonus, the full-cell configuration fabricated via NFPF/C/MWCNTs cathode and hard carbon (HC) anode demonstrated extraordinary rate capability and cyclic stability. Even at an ultrahigh rate of 10C, 54.7 mAh/g of initial reversible capacity and nearly 80.7 % of capacity retention after 200 cycles were achieved, highlighting the great potentials of NFPF/C/MWCNTs||HC full cell for practical applications in the fields of fast chargeable SIBs. This work offers a novel synthetic method for the preparation of efficient NFPF-based cathode.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"69 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157784","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Na2FePO4F (NFPF) with two-dimensional channels for transferring Na ions is considered as the promising cathode material for high-performance sodium-ion batteries (SIBs), while the electrochemical performance in full-cell devices remains unsatisfactory. Here, we developed a method combining high-boiling organic solvents assisted colloidal synthesis (HOS-CS) and subsequent calcination for preparing 20–30 nm of NFPF nanoparticles (NPs) wrapped by conductive carbon as the efficient cathode. HOS-CS demonstrated merits in terms of high utilization of precursors, high synthetic efficiency, and uniform distribution of both sizes and composition of NPs. Impressively, the as-obtained NFPF/C/MWCNTs delivered a reversible capacity up to 118.4 mAh/g at 0.1C. As a bonus, the full-cell configuration fabricated via NFPF/C/MWCNTs cathode and hard carbon (HC) anode demonstrated extraordinary rate capability and cyclic stability. Even at an ultrahigh rate of 10C, 54.7 mAh/g of initial reversible capacity and nearly 80.7 % of capacity retention after 200 cycles were achieved, highlighting the great potentials of NFPF/C/MWCNTs||HC full cell for practical applications in the fields of fast chargeable SIBs. This work offers a novel synthetic method for the preparation of efficient NFPF-based cathode.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定制 Na2FePO4F 纳米粒子,作为可快速充电的钠离子全电池的高倍率和长寿命正极
具有二维钠离子传输通道的 Na2FePO4F(NFPF)被认为是高性能钠离子电池(SIB)的理想正极材料,但其在全电池装置中的电化学性能仍不令人满意。在此,我们开发了一种结合高沸点有机溶剂辅助胶体合成(HOS-CS)和后续煅烧的方法,用于制备导电碳包裹的 20-30 纳米 NFPF 粒子(NPs),作为高效阴极。HOS-CS 具有前驱体利用率高、合成效率高、NPs 大小和成分分布均匀等优点。令人印象深刻的是,获得的 NFPF/C/MWCNT 在 0.1C 时的可逆容量高达 118.4 mAh/g。此外,通过 NFPF/C/MWCNTs 阴极和硬碳(HC)阳极制造的全电池配置还表现出了非凡的速率能力和循环稳定性。即使在 10C 的超高速率下,也能实现 54.7 mAh/g 的初始可逆容量和 200 次循环后近 80.7 % 的容量保持率,这凸显了 NFPF/C/MWCNTs||HC 全电池在快速充电 SIB 领域实际应用的巨大潜力。这项工作为制备基于 NFPF 的高效阴极提供了一种新的合成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
Addressable planar arrays of highly-luminescent 1,4-bis(5-phenyloxazol-2-yl)benzene nanowires via mask-confined graphoepitaxy for optoelectronic applications A no-crosstalk multi-functional tactile sensor for precise physiological monitoring Enhanced simultaneous removal of acetamiprid and cadmium from soil and water in paddy fields by Fe-Mn-BC ternary micro-electrolysis: Performance, mechanism and pathway Tailoring Na2FePO4F nanoparticles as the high-rate capability and Long-life cathode towards fast chargeable sodium-ion full batteries Aqueous “rocking-chair” Mn-ion battery based on an industrial pigment anode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1