{"title":"Tailoring Na2FePO4F nanoparticles as the high-rate capability and Long-life cathode towards fast chargeable sodium-ion full batteries","authors":"Weihuang Wang, Shuhui Li, Yixin Jia, Dongqiang Cao, Rui Liu, Zheng Wang, Zicheng Xie, Lantian Zhang, Liangbing Wang","doi":"10.1016/j.cej.2024.157784","DOIUrl":null,"url":null,"abstract":"Na<sub>2</sub>FePO<sub>4</sub>F (NFPF) with two-dimensional channels for transferring Na ions is considered as the promising cathode material for high-performance sodium-ion batteries (SIBs), while the electrochemical performance in full-cell devices remains unsatisfactory. Here, we developed a method combining high-boiling organic solvents assisted colloidal synthesis (HOS-CS) and subsequent calcination for preparing 20–30 nm of NFPF nanoparticles (NPs) wrapped by conductive carbon as the efficient cathode. HOS-CS demonstrated merits in terms of high utilization of precursors, high synthetic efficiency, and uniform distribution of both sizes and composition of NPs. Impressively, the as-obtained NFPF/C/MWCNTs delivered a reversible capacity up to 118.4 mAh/g at 0.1C. As a bonus, the full-cell configuration fabricated via NFPF/C/MWCNTs cathode and hard carbon (HC) anode demonstrated extraordinary rate capability and cyclic stability. Even at an ultrahigh rate of 10C, 54.7 mAh/g of initial reversible capacity and nearly 80.7 % of capacity retention after 200 cycles were achieved, highlighting the great potentials of NFPF/C/MWCNTs||HC full cell for practical applications in the fields of fast chargeable SIBs. This work offers a novel synthetic method for the preparation of efficient NFPF-based cathode.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"69 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157784","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Na2FePO4F (NFPF) with two-dimensional channels for transferring Na ions is considered as the promising cathode material for high-performance sodium-ion batteries (SIBs), while the electrochemical performance in full-cell devices remains unsatisfactory. Here, we developed a method combining high-boiling organic solvents assisted colloidal synthesis (HOS-CS) and subsequent calcination for preparing 20–30 nm of NFPF nanoparticles (NPs) wrapped by conductive carbon as the efficient cathode. HOS-CS demonstrated merits in terms of high utilization of precursors, high synthetic efficiency, and uniform distribution of both sizes and composition of NPs. Impressively, the as-obtained NFPF/C/MWCNTs delivered a reversible capacity up to 118.4 mAh/g at 0.1C. As a bonus, the full-cell configuration fabricated via NFPF/C/MWCNTs cathode and hard carbon (HC) anode demonstrated extraordinary rate capability and cyclic stability. Even at an ultrahigh rate of 10C, 54.7 mAh/g of initial reversible capacity and nearly 80.7 % of capacity retention after 200 cycles were achieved, highlighting the great potentials of NFPF/C/MWCNTs||HC full cell for practical applications in the fields of fast chargeable SIBs. This work offers a novel synthetic method for the preparation of efficient NFPF-based cathode.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.