Modulation of oxygen vacancies in NiFe layered double hydroxides through dual-doping with Mo/Cr cations for efficient seawater hydrogen production

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-11-19 DOI:10.1016/j.apsusc.2024.161828
Yan Zheng, Jinshu Lu, Xuan Wang, Tianbo Jia, Jinyi Cai, Dingkai Zhou, Yuexin Qian, Yamin Fu, Chunyang Zhai, Hengcong Tao, Yingtang Zhou, Shunli Li
{"title":"Modulation of oxygen vacancies in NiFe layered double hydroxides through dual-doping with Mo/Cr cations for efficient seawater hydrogen production","authors":"Yan Zheng, Jinshu Lu, Xuan Wang, Tianbo Jia, Jinyi Cai, Dingkai Zhou, Yuexin Qian, Yamin Fu, Chunyang Zhai, Hengcong Tao, Yingtang Zhou, Shunli Li","doi":"10.1016/j.apsusc.2024.161828","DOIUrl":null,"url":null,"abstract":"Seawater splitting to produce hydrogen holds promise for renewable energy but faces challenges from chloride ions, causing electrode corrosion and competition between chlorine oxidation reaction (ClOR) and oxygen evolution reaction (OER). Therefore, it is crucial to develop highly efficient and stable electrocatalysts for seawater splitting. Here, we employ a dual-doping strategy of Mo/Cr cations and a sulfuration approach to fabricate the S-MoCr-NiFe@NF bifunctional catalyst with a 3D nano-flower structure. The S-MoCr-NiFe@NF catalyst exhibits remarkable catalytic performance for the oxygen evolution reaction (OER) in 1.0 M KOH + 0.5 M NaCl and 1.0 M KOH + Seawater, achieving current densities of 10 mA cm<sup>−2</sup> at low overpotentials of 116 and 141 mV, respectively. Furthermore, it was demonstrated that the S-MoCr-NiFe@NF catalyst exhibited remarkable performance in alkaline overall seawater splitting, requiring only 1.48 and 1.57 V to achieve current densities of 10 mA cm<sup>−2</sup> in 1.0 M KOH + 0.5 M NaCl and 1.0 M KOH + Seawater, respectively. The in-situ Raman and DFT calculations confirm Ni as the primary active sites, reducing the energy barrier of the rate-determining step and enhancing OER performance. This study will offer a viable approach to developing and creating highly effective bifunctional catalysts for seawater splitting.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"106 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161828","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Seawater splitting to produce hydrogen holds promise for renewable energy but faces challenges from chloride ions, causing electrode corrosion and competition between chlorine oxidation reaction (ClOR) and oxygen evolution reaction (OER). Therefore, it is crucial to develop highly efficient and stable electrocatalysts for seawater splitting. Here, we employ a dual-doping strategy of Mo/Cr cations and a sulfuration approach to fabricate the S-MoCr-NiFe@NF bifunctional catalyst with a 3D nano-flower structure. The S-MoCr-NiFe@NF catalyst exhibits remarkable catalytic performance for the oxygen evolution reaction (OER) in 1.0 M KOH + 0.5 M NaCl and 1.0 M KOH + Seawater, achieving current densities of 10 mA cm−2 at low overpotentials of 116 and 141 mV, respectively. Furthermore, it was demonstrated that the S-MoCr-NiFe@NF catalyst exhibited remarkable performance in alkaline overall seawater splitting, requiring only 1.48 and 1.57 V to achieve current densities of 10 mA cm−2 in 1.0 M KOH + 0.5 M NaCl and 1.0 M KOH + Seawater, respectively. The in-situ Raman and DFT calculations confirm Ni as the primary active sites, reducing the energy barrier of the rate-determining step and enhancing OER performance. This study will offer a viable approach to developing and creating highly effective bifunctional catalysts for seawater splitting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过钼/铬阳离子双掺杂调节镍铁层双氢氧化物中的氧空位,实现高效海水制氢
海水裂解制氢有望成为可再生能源,但面临着氯离子造成的电极腐蚀以及氯氧化反应(ClOR)和氧进化反应(OER)之间的竞争等挑战。因此,开发高效稳定的海水裂解电催化剂至关重要。在此,我们采用钼/铬阳离子双掺杂策略和硫化方法,制备出具有三维纳米花结构的 S-MoCr-NiFe@NF 双功能催化剂。S-MoCr-NiFe@NF 催化剂在 1.0 M KOH + 0.5 M NaCl 和 1.0 M KOH + 海水中的氧进化反应(OER)中表现出卓越的催化性能,分别在 116 和 141 mV 的低过电位下实现了 10 mA cm-2 的电流密度。此外,研究还表明,S-MoCr-NiFe@NF 催化剂在碱性整体海水拆分中表现出卓越的性能,在 1.0 M KOH + 0.5 M NaCl 和 1.0 M KOH + 海水中分别只需要 1.48 和 1.57 V 就能达到 10 mA cm-2 的电流密度。原位拉曼和 DFT 计算证实,镍是主要的活性位点,可降低决定速率步骤的能障,提高 OER 性能。这项研究将为开发和创造用于海水分离的高效双功能催化剂提供一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Synthesis and potent antibacterial activity of nano-CuFe2O4/MoS2@Ag composite under visible light Non-Fourier thermal spike effect on nanocrystalline Cu phase engineering Fully hot Air-Processed All-Inorganic CsPbI2Br perovskite solar cells for outdoor and indoor applications Designing core–shell LiNi0.5Mn1.5O4-based cathode materials with enhanced rate capability and improved cycling stability Fe/Co bimetallic borides with modified electronic structure for Efficient oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1