{"title":"Advancing Circular Economy: Comparative Analysis of Recycled and Virgin Carbon Fiber 3D Printed Composites on Performance and Eco-Efficiency","authors":"Muhammad Ateeq, Arslan Akbar, Muhammad Shafique","doi":"10.1016/j.polymer.2024.127865","DOIUrl":null,"url":null,"abstract":"Carbon fiber-reinforced polymer composites are widely used for their corrosion resistance, high strength, stiffness, and lightweight properties. However, the extensive use of carbon fiber generates significant waste at the end of its lifecycle. Recycling technologies can effectively recover carbon fiber from this waste, making it suitable for reuse in various applications. Recently, there has been a growing trend in using recycled carbon fiber as a reinforcement material in polymer matrices, offering a cost-effective alternative to virgin carbon fiber while maintaining excellent mechanical properties. However, most studies focus on the mechanical strength of parts made from recycled and virgin carbon fibers, with less attention given to the environmental impacts of these materials. The primary objective of this study is the comparative analysis of the specimens manufactured using recycled and virgin carbon fiber-reinforced polyamide-12 material based on the mechanical performance, life cycle cost, and environmental impact. The experimental investigations showed that the mechanical performance of the recycled carbon fiber polyamide-12 (rCFRP12) composites are more efficient than the specimens manufactured using the virgin carbon fiber polyamide-12 (vCFRP12) composites such as three-point bending test results show that parts made from rCFRP12 composites achieved a flexural strength of 56.25 MPa, outperforming those made with vCFRP12 (49.9 MPa). Additionally, the recycled composite specimens also exhibited higher tensile strength than their virgin carbon fiber counterparts. The life cycle analysis revealed that samples made with recycled carbon fiber have a lower environmental impact, reducing global warming, ozone depletion, and carcinogenic effects by 11.98% compared to those made with virgin carbon fiber. Additionally, the production cost of recycled carbon fiber is significantly lower than that of virgin carbon fiber.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"54 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127865","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber-reinforced polymer composites are widely used for their corrosion resistance, high strength, stiffness, and lightweight properties. However, the extensive use of carbon fiber generates significant waste at the end of its lifecycle. Recycling technologies can effectively recover carbon fiber from this waste, making it suitable for reuse in various applications. Recently, there has been a growing trend in using recycled carbon fiber as a reinforcement material in polymer matrices, offering a cost-effective alternative to virgin carbon fiber while maintaining excellent mechanical properties. However, most studies focus on the mechanical strength of parts made from recycled and virgin carbon fibers, with less attention given to the environmental impacts of these materials. The primary objective of this study is the comparative analysis of the specimens manufactured using recycled and virgin carbon fiber-reinforced polyamide-12 material based on the mechanical performance, life cycle cost, and environmental impact. The experimental investigations showed that the mechanical performance of the recycled carbon fiber polyamide-12 (rCFRP12) composites are more efficient than the specimens manufactured using the virgin carbon fiber polyamide-12 (vCFRP12) composites such as three-point bending test results show that parts made from rCFRP12 composites achieved a flexural strength of 56.25 MPa, outperforming those made with vCFRP12 (49.9 MPa). Additionally, the recycled composite specimens also exhibited higher tensile strength than their virgin carbon fiber counterparts. The life cycle analysis revealed that samples made with recycled carbon fiber have a lower environmental impact, reducing global warming, ozone depletion, and carcinogenic effects by 11.98% compared to those made with virgin carbon fiber. Additionally, the production cost of recycled carbon fiber is significantly lower than that of virgin carbon fiber.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.