Relationship between the molecular structure of polyimide and its dielectric properties: Optimizing performance for triboelectric nanogenerators

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-11-20 DOI:10.1016/j.polymer.2024.127868
Songhao Mo, Hong Ruan, Yuqi Li
{"title":"Relationship between the molecular structure of polyimide and its dielectric properties: Optimizing performance for triboelectric nanogenerators","authors":"Songhao Mo, Hong Ruan, Yuqi Li","doi":"10.1016/j.polymer.2024.127868","DOIUrl":null,"url":null,"abstract":"Triboelectric nanogenerators (TENGs) are eco-friendly energy harvesters. Polyimide (PI) has been widely used as a triboelectric layer in TENGs, but the relationship between its structure and performance is not fully understood. Herein, PI films with varying molecular structures were prepared to investigate the effects of -O- and -CF<sub>3</sub> groups on their physical properties and triboelectric performance. The results showed that PI films with -O- exhibited better thermal stability, while both -O- and -CF<sub>3</sub> groups effectively modulated optical transparency and dielectric properties. At 450 nm, M6-PI and O6-PI exhibited the highest transmittance at 63.14% and 55.06%, respectively, with dielectric loss performance below 0.5% at 10<sup>5</sup> Hz. PI films incorporating -O- and -CF<sub>3</sub> demonstrated significant improvements in triboelectric performance. Theoretical calculations clarified these groups influence optical transparency, dielectric properties, and electrical output performance. Ultimately, the fabricated 6PI-TENG achieved the desired triboelectric performance with enhanced electrical output. The V<sub>oc</sub> and Q<sub>sc</sub> of 6PI reached approximately 80 V and 25 nC, respectively. This study offers essential theoretical insights for designing and advancing of TENGs, contributing to sustainable energy development.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"4 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127868","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Triboelectric nanogenerators (TENGs) are eco-friendly energy harvesters. Polyimide (PI) has been widely used as a triboelectric layer in TENGs, but the relationship between its structure and performance is not fully understood. Herein, PI films with varying molecular structures were prepared to investigate the effects of -O- and -CF3 groups on their physical properties and triboelectric performance. The results showed that PI films with -O- exhibited better thermal stability, while both -O- and -CF3 groups effectively modulated optical transparency and dielectric properties. At 450 nm, M6-PI and O6-PI exhibited the highest transmittance at 63.14% and 55.06%, respectively, with dielectric loss performance below 0.5% at 105 Hz. PI films incorporating -O- and -CF3 demonstrated significant improvements in triboelectric performance. Theoretical calculations clarified these groups influence optical transparency, dielectric properties, and electrical output performance. Ultimately, the fabricated 6PI-TENG achieved the desired triboelectric performance with enhanced electrical output. The Voc and Qsc of 6PI reached approximately 80 V and 25 nC, respectively. This study offers essential theoretical insights for designing and advancing of TENGs, contributing to sustainable energy development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚酰亚胺分子结构与其介电性能之间的关系:优化三电纳米发电机的性能
三电纳米发电机(TENGs)是一种生态友好型能量收集器。聚酰亚胺(PI)已被广泛用作 TENG 的三电层,但其结构与性能之间的关系尚未完全明了。本文制备了不同分子结构的聚酰亚胺薄膜,研究了-O-和-CF3基团对其物理性质和三电性能的影响。结果表明,带有 -O- 的 PI 薄膜具有更好的热稳定性,而 -O- 和 -CF3 基团则能有效调节光学透明度和介电性能。在 450 纳米波长下,M6-PI 和 O6-PI 的透光率最高,分别为 63.14% 和 55.06%,在 105 Hz 频率下的介电损耗性能低于 0.5%。含有 -O- 和 -CF3 的 PI 薄膜在三电性能方面有显著改善。理论计算阐明了这些基团对光学透明度、介电性能和电输出性能的影响。最终,制造出的 6PI-TENG 实现了理想的三电性能,并增强了电输出。6PI 的 Voc 和 Qsc 分别达到了约 80 V 和 25 nC。这项研究为设计和推进 TENG 提供了重要的理论启示,有助于可持续能源发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Synthesis, Characteristics and Thermally Induced Self-Assembly of Silicon-Based Thermo/Photo-Responsive Block Copolymers Prepared from Monomer Bearing Paired Side-Chain Azo Mesogens Using RAFT Process Preparation of a novel porous organic polymer for selective extraction/determination of palladium ions from water samples A New Method for Conductivity Prediction in Polymer Carbon Nanofiber System by the Interphase Size and Total Conductivity of Constituents Anionic Polymers Formed by Dinuclear Rhodium Units and Dicyanide Silver/Gold Moieties Relationship between the molecular structure of polyimide and its dielectric properties: Optimizing performance for triboelectric nanogenerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1