{"title":"Revealing the Synergistic Spatial Effects in Soil Heavy Metal Pollution with Explainable Machine Learning Models","authors":"Yibo Yan, Yong Yang","doi":"10.1016/j.jhazmat.2024.136578","DOIUrl":null,"url":null,"abstract":"The identification of factors that affect changes in the heavy metal content of soil is the basis for reducing or preventing soil heavy metal pollution. In this research, 16 environmental factors were selected, and the influences of soil heavy metal spatial distribution factors and the synergy amongst space factors were evaluated using a geographic detector (GD) and the extreme gradient boosting (XGBoost)-Shapley additive explanations (SHAP) model. Three heavy metal elements, namely, Cd, Cu and Pb, in the study region were examined. The following results were obtained. (1) XGBoost demonstrated high accuracy in predicting the spatial distributions of soil heavy metals, with each heavy metal having an <em>R</em><sup>2</sup> value of over 0.6. (2) Geological type map (Geomap) and enterprise density considerably affected the concentrations of Cd, Cu and Pb in soil in the GD and XGBoost-SHAP models. In addition, cross-detection revealed strong explanatory power when natural and human factors were combined. (3) Under the same geological background, the different trends of gross domestic product effects on heavy metals indicated that pollution control measures were effective in economically developed areas, and the economy and the environment could be balanced. Meanwhile, the interaction between the normalised difference vegetation index and enterprise density showed that vegetation could alleviate heavy metal pollution in the region. This study supports strategic decision-making, serving as a reference for the global management of soil heavy metal contamination, sustainable ecological development and assurance of people’s health and well-being.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"250 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136578","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of factors that affect changes in the heavy metal content of soil is the basis for reducing or preventing soil heavy metal pollution. In this research, 16 environmental factors were selected, and the influences of soil heavy metal spatial distribution factors and the synergy amongst space factors were evaluated using a geographic detector (GD) and the extreme gradient boosting (XGBoost)-Shapley additive explanations (SHAP) model. Three heavy metal elements, namely, Cd, Cu and Pb, in the study region were examined. The following results were obtained. (1) XGBoost demonstrated high accuracy in predicting the spatial distributions of soil heavy metals, with each heavy metal having an R2 value of over 0.6. (2) Geological type map (Geomap) and enterprise density considerably affected the concentrations of Cd, Cu and Pb in soil in the GD and XGBoost-SHAP models. In addition, cross-detection revealed strong explanatory power when natural and human factors were combined. (3) Under the same geological background, the different trends of gross domestic product effects on heavy metals indicated that pollution control measures were effective in economically developed areas, and the economy and the environment could be balanced. Meanwhile, the interaction between the normalised difference vegetation index and enterprise density showed that vegetation could alleviate heavy metal pollution in the region. This study supports strategic decision-making, serving as a reference for the global management of soil heavy metal contamination, sustainable ecological development and assurance of people’s health and well-being.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.