Aijiao Yuan, Huifang Hao, Rui Sha, Hang Xiao, Fan Yang, Bo Pang, Jinhua Li*, Minghua Jin, Wenjing Xie, Lixia Zhao, Yawei Wang, Yu Zhang, Juan Li and Hanyong Peng*,
{"title":"In Situ Imaging of Cellular Inflammatory Response to Antibiotic Exposure with a DNAzyme Nanorobot","authors":"Aijiao Yuan, Huifang Hao, Rui Sha, Hang Xiao, Fan Yang, Bo Pang, Jinhua Li*, Minghua Jin, Wenjing Xie, Lixia Zhao, Yawei Wang, Yu Zhang, Juan Li and Hanyong Peng*, ","doi":"10.1021/acs.est.4c0695610.1021/acs.est.4c06956","DOIUrl":null,"url":null,"abstract":"<p >Antibiotic-induced inflammation involves the release of myeloperoxidase (MPO), an enzyme whose expression in tissues is associated with the inflammatory pathway. However, existing methods for detecting MPO in cells are limited. In this study, a DNAzyme nanorobot was developed using a scaffold of gold nanoparticles (AuNPs) decorated with functional DNAzyme strands and their fluorophore-labeled substrate strands. The DNAzyme remains inactive due to a self-assembled hairpin structure, with a phosphorothioate (PT) modification inserted into the stem domain. When MPO is present, it triggers a halogenation process that generates hypochlorous acid (HClO). HClO specifically catalyzes the cleavage of the PT-site, releasing free DNAzyme strands to cleave their substrates and generating an increasing fluorescent signal. The detection limit for MPO and its primary product, HClO, were determined to be 0.038 μg/mL and 0.013 μM, respectively. The DNAzyme nanorobot can be readily introduced into cells and function autonomously to differentiate increased MPO/HClO levels caused by antibiotics. This approach was applied to image RAW264.7 cells exposed to four prevalent antibiotics found in the environment (phorbol 12-myristate 13-acetate, erythromycin, penicillin, and tetracycline) as well as antibiotic production wastewater. This nanorobot offers novel strategies for monitoring inflammation to evaluate the health impacts of antibiotic exposure.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 46","pages":"20619–20629 20619–20629"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c06956","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic-induced inflammation involves the release of myeloperoxidase (MPO), an enzyme whose expression in tissues is associated with the inflammatory pathway. However, existing methods for detecting MPO in cells are limited. In this study, a DNAzyme nanorobot was developed using a scaffold of gold nanoparticles (AuNPs) decorated with functional DNAzyme strands and their fluorophore-labeled substrate strands. The DNAzyme remains inactive due to a self-assembled hairpin structure, with a phosphorothioate (PT) modification inserted into the stem domain. When MPO is present, it triggers a halogenation process that generates hypochlorous acid (HClO). HClO specifically catalyzes the cleavage of the PT-site, releasing free DNAzyme strands to cleave their substrates and generating an increasing fluorescent signal. The detection limit for MPO and its primary product, HClO, were determined to be 0.038 μg/mL and 0.013 μM, respectively. The DNAzyme nanorobot can be readily introduced into cells and function autonomously to differentiate increased MPO/HClO levels caused by antibiotics. This approach was applied to image RAW264.7 cells exposed to four prevalent antibiotics found in the environment (phorbol 12-myristate 13-acetate, erythromycin, penicillin, and tetracycline) as well as antibiotic production wastewater. This nanorobot offers novel strategies for monitoring inflammation to evaluate the health impacts of antibiotic exposure.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.