Bioactivity Profiling of Chemical Mixtures for Hazard Characterization

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-12-20 DOI:10.1021/acs.est.4c11095
Xiaojing Li, Jiarui Zhou, Yaohui Bai, Meng Qiao, Wei Xiong, Tobias Schulze, Martin Krauss, Timothy D. Williams, Ben Brown, Luisa Orsini, Liang-Hong Guo, John K. Colbourne
{"title":"Bioactivity Profiling of Chemical Mixtures for Hazard Characterization","authors":"Xiaojing Li, Jiarui Zhou, Yaohui Bai, Meng Qiao, Wei Xiong, Tobias Schulze, Martin Krauss, Timothy D. Williams, Ben Brown, Luisa Orsini, Liang-Hong Guo, John K. Colbourne","doi":"10.1021/acs.est.4c11095","DOIUrl":null,"url":null,"abstract":"The assessment and regulation of chemical toxicity to protect human health and the environment are done one chemical at a time and seldom at environmentally relevant concentrations. However, chemicals are found in the environment as mixtures, and their toxicity is largely unknown. Understanding the hazard posed by chemicals within the mixture is critical to enforce protective measures. Here, we demonstrate the application of bioactivity profiling of environmental water samples using the sentinel and ecotoxicology model species <i>Daphnia</i> to reveal the biomolecular response induced by exposure to real-world mixtures. We exposed a <i>Daphnia</i> strain to 30 sampled waters of the Chaobai River and measured the gene expression response profiles. Using a multiblock correlation analysis, we establish correlations between chemical mixtures identified in 30 water samples with gene expression patterns induced by these chemical mixtures. We identified 80 metabolic pathways putatively activated by mixtures of inorganic ions, heavy metals, polycyclic aromatic hydrocarbons, industrial chemicals, and a set of biocides, pesticides, and pharmacologically active substances. Our data-driven approach discovered both known bioactivity signatures with previously described modes of action and new pathways linked to undiscovered potential hazards. This study demonstrates the feasibility of reducing the complexity of real-world mixture toxicity to characterize the biomolecular effects of a defined number of chemical components based on gene expression monitoring of the sentinel species <i>Daphnia</i>.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"1 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11095","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The assessment and regulation of chemical toxicity to protect human health and the environment are done one chemical at a time and seldom at environmentally relevant concentrations. However, chemicals are found in the environment as mixtures, and their toxicity is largely unknown. Understanding the hazard posed by chemicals within the mixture is critical to enforce protective measures. Here, we demonstrate the application of bioactivity profiling of environmental water samples using the sentinel and ecotoxicology model species Daphnia to reveal the biomolecular response induced by exposure to real-world mixtures. We exposed a Daphnia strain to 30 sampled waters of the Chaobai River and measured the gene expression response profiles. Using a multiblock correlation analysis, we establish correlations between chemical mixtures identified in 30 water samples with gene expression patterns induced by these chemical mixtures. We identified 80 metabolic pathways putatively activated by mixtures of inorganic ions, heavy metals, polycyclic aromatic hydrocarbons, industrial chemicals, and a set of biocides, pesticides, and pharmacologically active substances. Our data-driven approach discovered both known bioactivity signatures with previously described modes of action and new pathways linked to undiscovered potential hazards. This study demonstrates the feasibility of reducing the complexity of real-world mixture toxicity to characterize the biomolecular effects of a defined number of chemical components based on gene expression monitoring of the sentinel species Daphnia.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Enantioselective Toxicity of Ibuprofen to Earthworms: Unraveling the Effect and Mechanism on Enhanced Toxicity of S-Ibuprofen Over R-Ibuprofen Expanding PFAS Identification with Transformation Product Libraries: Nontargeted Analysis Reveals Biotransformation Products in Mice Foliar Application of Zinc Oxide Nanoparticles Alleviates Phenanthrene and Cadmium-Induced Phytotoxicity in Lettuce: Regulation of Plant–Rhizosphere–Microbial Long Distance Probing Mineral-Organic Interfaces in Soils and Sediments Using Optical Photothermal Infrared Microscopy Bioactivity Profiling of Chemical Mixtures for Hazard Characterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1