A catalytic approach for the dehydrogenative upgradation of crude glycerol to lactate and hydrogen generation†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2024-11-20 DOI:10.1039/D4RA07028C
Satabdee Tanaya Sahoo, Anurita Sinku and Prosenjit Daw
{"title":"A catalytic approach for the dehydrogenative upgradation of crude glycerol to lactate and hydrogen generation†","authors":"Satabdee Tanaya Sahoo, Anurita Sinku and Prosenjit Daw","doi":"10.1039/D4RA07028C","DOIUrl":null,"url":null,"abstract":"<p >The ambiguous nature of non-innocent ligand catalysts provides an excellent strategy for developing an efficient catalyst system featuring extended applicability in sustainable catalysis. In this study, we unveil the catalytic activity of an NNN-Ru catalyst for lactic acid synthesis from a mixture of glycerol, ethylene glycol, and methanol. The developed strategy was also implemented to synthesize lactate (up to 80% yield) with good selectivity <em>via</em> the dehydrogenative upgradation of a crude glycerol and ethylene glycol mixture. As an extended utility, the method was utilized for lactate synthesis from triglyceride directly with hydrogen gas generation.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 50","pages":" 37082-37086"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra07028c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07028c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ambiguous nature of non-innocent ligand catalysts provides an excellent strategy for developing an efficient catalyst system featuring extended applicability in sustainable catalysis. In this study, we unveil the catalytic activity of an NNN-Ru catalyst for lactic acid synthesis from a mixture of glycerol, ethylene glycol, and methanol. The developed strategy was also implemented to synthesize lactate (up to 80% yield) with good selectivity via the dehydrogenative upgradation of a crude glycerol and ethylene glycol mixture. As an extended utility, the method was utilized for lactate synthesis from triglyceride directly with hydrogen gas generation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将粗甘油脱氢升级为乳酸和制氢的催化方法†.
非无辜配体催化剂的模糊性质为开发高效催化剂体系提供了一种极佳的策略,这种催化剂体系具有在可持续催化中广泛应用的特点。在本研究中,我们揭示了一种 NNN-Ru 催化剂在从甘油、乙二醇和甲醇的混合物中合成乳酸时的催化活性。我们还采用所开发的策略,通过对粗甘油和乙二醇混合物进行脱氢升级,以良好的选择性合成了乳酸(产率高达 80%)。作为一种扩展用途,该方法被直接用于从甘油三酯合成乳酸并产生氢气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Combining de novo molecular design with semiempirical protein–ligand binding free energy calculation† Characterization and enhanced carbon dioxide sensing performance of spin-coated Na- and Li-doped and Co-doped cobalt oxide thin films† Regulation of oxidative stress enzymes in Candida auris by Dermaseptin: potential implications for antifungal drug discovery Design of an LiF-rich interface layer using high-concentration fluoroethylene carbonate and lithium bis(fluorosulfonyl)imide (LiFSI) to stabilize Li metal batteries A catalytic approach for the dehydrogenative upgradation of crude glycerol to lactate and hydrogen generation†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1