Integrated metabolome and transcriptome analyses provide comprehensive insight into dark- and light-responsive mechanisms in Althaea officinalis hairy root cultures
Yun Ji Park, Jae Kwang Kim, Nam Su Kim, Young Jin Park, Ramaraj Sathasivam, Sang Un Park
{"title":"Integrated metabolome and transcriptome analyses provide comprehensive insight into dark- and light-responsive mechanisms in Althaea officinalis hairy root cultures","authors":"Yun Ji Park, Jae Kwang Kim, Nam Su Kim, Young Jin Park, Ramaraj Sathasivam, Sang Un Park","doi":"10.1186/s40538-024-00698-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Light, an essential factor in plant development, exerts a significant impact on both primary and secondary metabolism in plants. <i>Althaea officinalis</i>, commonly known as marshmallow, offers versatile applications through its leaves and roots. With a plethora of identified bioactive compounds and their extensive use in food, health, and supplements, it is widely cultivated globally. This study aimed to demonstrate the definitive positive impact of dark and light irradiation on both primary and secondary metabolite production in <i>A. officinalis</i> hairy roots and to elucidate the light-responsive mechanism through integrated metabolome and transcriptome analysis.</p><h3>Results</h3><p>When exposed to light, significant changes with a greenish colour shift were observed in 60 metabolites. Multivariate statistical analysis revealed a distinct separation between light- and dark-treated hairy roots, likely attributed to metabolites such as glutamic acid, phenylalanine, catechin hydrate, and chlorophyll. Correspondingly, the pathways significantly impacted included galactose metabolism, alanine, aspartate, and glutamate metabolism, flavone and flavonol biosynthesis, and phenylalanine metabolism. Light-responsive differentially expressed genes associated with pigment and phenylpropanoid biosynthetic pathways were analysed and compared via RNA sequencing. Furthermore, among the light-related transcription factors, including CONSTANS-LIKE and double B-box zinc finger, which are responsible for photomorphogenic modulation, were upregulated. Moreover, light-responsive genes, such as ribulose bisphosphate carboxylase, photosystem II, and chlorophyll A-B binding family protein, were upregulated.</p><h3>Conclusions</h3><p>These findings emphasise that exposure of <i>A. officinalis</i> hairy root culture to light conditions is a useful method for enhancing most of the primary and secondary metabolites.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00698-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00698-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Light, an essential factor in plant development, exerts a significant impact on both primary and secondary metabolism in plants. Althaea officinalis, commonly known as marshmallow, offers versatile applications through its leaves and roots. With a plethora of identified bioactive compounds and their extensive use in food, health, and supplements, it is widely cultivated globally. This study aimed to demonstrate the definitive positive impact of dark and light irradiation on both primary and secondary metabolite production in A. officinalis hairy roots and to elucidate the light-responsive mechanism through integrated metabolome and transcriptome analysis.
Results
When exposed to light, significant changes with a greenish colour shift were observed in 60 metabolites. Multivariate statistical analysis revealed a distinct separation between light- and dark-treated hairy roots, likely attributed to metabolites such as glutamic acid, phenylalanine, catechin hydrate, and chlorophyll. Correspondingly, the pathways significantly impacted included galactose metabolism, alanine, aspartate, and glutamate metabolism, flavone and flavonol biosynthesis, and phenylalanine metabolism. Light-responsive differentially expressed genes associated with pigment and phenylpropanoid biosynthetic pathways were analysed and compared via RNA sequencing. Furthermore, among the light-related transcription factors, including CONSTANS-LIKE and double B-box zinc finger, which are responsible for photomorphogenic modulation, were upregulated. Moreover, light-responsive genes, such as ribulose bisphosphate carboxylase, photosystem II, and chlorophyll A-B binding family protein, were upregulated.
Conclusions
These findings emphasise that exposure of A. officinalis hairy root culture to light conditions is a useful method for enhancing most of the primary and secondary metabolites.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.