{"title":"Unexpected Warming From Land Radiative Management","authors":"Yu Cheng, Kaighin A. McColl","doi":"10.1029/2024gl112433","DOIUrl":null,"url":null,"abstract":"“Land radiative management” (LRM)—deliberately increasing surface albedo to decrease temperatures—has been proposed as a form of geoengineering to mitigate the effects of regional warming. Here, we show that, contrary to expectations, LRM causes temperatures to increase in surrounding regions. The basic reason for the increase is unintended impacts on precipitation. Precipitation is suppressed over the LRM region, but this effect also extends to nearby areas unprotected by LRM. The reduction in precipitation and soil moisture in these regions leads to higher temperatures than would be expected in the absence of LRM. The resulting warming outside the LRM region is comparable to the cooling achieved inside it. This implies that, if wealthy regions unilaterally adopt LRM to cool, their neighbors may experience warming, worsening heat inequality.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl112433","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
“Land radiative management” (LRM)—deliberately increasing surface albedo to decrease temperatures—has been proposed as a form of geoengineering to mitigate the effects of regional warming. Here, we show that, contrary to expectations, LRM causes temperatures to increase in surrounding regions. The basic reason for the increase is unintended impacts on precipitation. Precipitation is suppressed over the LRM region, but this effect also extends to nearby areas unprotected by LRM. The reduction in precipitation and soil moisture in these regions leads to higher temperatures than would be expected in the absence of LRM. The resulting warming outside the LRM region is comparable to the cooling achieved inside it. This implies that, if wealthy regions unilaterally adopt LRM to cool, their neighbors may experience warming, worsening heat inequality.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.