Mechanistic Insights into Gas Adsorption on 2D Materials

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-20 DOI:10.1002/smll.202406706
Manisha Joshi, Xiaojun Ren, Tongxi Lin, Rakesh Joshi
{"title":"Mechanistic Insights into Gas Adsorption on 2D Materials","authors":"Manisha Joshi, Xiaojun Ren, Tongxi Lin, Rakesh Joshi","doi":"10.1002/smll.202406706","DOIUrl":null,"url":null,"abstract":"Owing to their exceptional characteristics, such as one‐atom thickness, high specific surface area, and tunability of surfaces, 2D materials are excellent templates to study the surface‐dependent gas adsorption phenomenon. Moreover, the properties of 2D materials like morphology, bandgap, structure, and carrier mobility can be modulated easily by modification methods such as functionalization, defect and doping engineering. These modifications create and activate unconventional inert and active sites, leading to the selective adsorption of gases via mechanisms such as charge transfer kinetics, Schottky‐barrier modification, and surface interactions. These methods enhance the adsorption sites by adding covalent and non‐covalent moieties to the 2D surface and play a critical role in developing ultrafast gas sensing with high sensitivity, selectivity, fast response/recovery rates, and low detection limits. Here, this perspective is presented on the mechanism of the adsorption process of gases on modified 2D surfaces based on recent studies related to adsorption‐dependent applications of 2D materials.","PeriodicalId":228,"journal":{"name":"Small","volume":"178 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406706","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to their exceptional characteristics, such as one‐atom thickness, high specific surface area, and tunability of surfaces, 2D materials are excellent templates to study the surface‐dependent gas adsorption phenomenon. Moreover, the properties of 2D materials like morphology, bandgap, structure, and carrier mobility can be modulated easily by modification methods such as functionalization, defect and doping engineering. These modifications create and activate unconventional inert and active sites, leading to the selective adsorption of gases via mechanisms such as charge transfer kinetics, Schottky‐barrier modification, and surface interactions. These methods enhance the adsorption sites by adding covalent and non‐covalent moieties to the 2D surface and play a critical role in developing ultrafast gas sensing with high sensitivity, selectivity, fast response/recovery rates, and low detection limits. Here, this perspective is presented on the mechanism of the adsorption process of gases on modified 2D surfaces based on recent studies related to adsorption‐dependent applications of 2D materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维材料的气体吸附机理透视
二维材料具有一原子厚度、高比表面积和表面可调性等优异特性,是研究表面依赖性气体吸附现象的绝佳模板。此外,二维材料的形态、带隙、结构和载流子迁移率等特性可以通过功能化、缺陷和掺杂工程等改性方法轻松调节。这些改性可创建和激活非常规的惰性和活性位点,从而通过电荷转移动力学、肖特基势垒改性和表面相互作用等机制实现对气体的选择性吸附。这些方法通过在二维表面添加共价和非共价分子来增强吸附位点,在开发具有高灵敏度、高选择性、快速响应/恢复率和低检测限的超快气体传感技术方面发挥着至关重要的作用。在此,我们将根据最近与二维材料吸附依赖性应用相关的研究,从这一角度介绍气体在改性二维表面上的吸附过程机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
A Highly Compatible Deep Eutectic Solvent-Based Poly(ethylene) Oxide Polymer Electrolyte to Enable the Stable Operation of 4.5 V Lithium Metal Batteries Supercrystal Engineering of Nanoarrows Enabled by Tailored Concavity (Small 47/2024) Recent Advances of Bio-Based Hydrogel Derived Interfacial Evaporator for Sustainable Water and Collaborative Energy Storage Applications (Small 47/2024) Copper-Graphene Composite (CGC) Conductors: Synthesis, Microstructure, and Electrical Performance (Small 47/2024) Multi-Biomarker Profiling for Precision Diagnosis of Lung Cancer (Small 47/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1