Karlin Hilai, Daniil Grubich, Marcus Akrawi, Hui Zhu, Razanne Zaghloul, Chenjun Shi, Man Do, Dongxiao Zhu, Jitao Zhang
{"title":"Mechanical Evolution of Metastatic Cancer Cells in 3D Microenvironment","authors":"Karlin Hilai, Daniil Grubich, Marcus Akrawi, Hui Zhu, Razanne Zaghloul, Chenjun Shi, Man Do, Dongxiao Zhu, Jitao Zhang","doi":"10.1002/smll.202403242","DOIUrl":null,"url":null,"abstract":"Cellular biomechanics plays a critical role in cancer metastasis and tumor progression. Existing studies on cancer cell biomechanics are mostly conducted in flat 2D conditions, where cells’ behavior can differ considerably from those in 3D physiological environments. Despite great advances in developing 3D in vitro models, probing cellular elasticity in 3D conditions remains a major challenge for existing technologies. In this work, optical Brillouin microscopy is utilized to longitudinally acquire mechanical images of growing cancerous spheroids over the period of 8 days. The dense mechanical mapping from Brillouin microscopy enables us to extract spatially resolved and temporally evolving mechanical features that were previously inaccessible. Using an established machine learning algorithm, it is demonstrated that incorporating these extracted mechanical features significantly improves the classification accuracy of cancer cells, from 74% to 95%. Building on this finding, a deep learning pipeline capable of accurately differentiating cancerous spheroids from normal ones solely using Brillouin images have been developed, suggesting the mechanical features of cancer cells can potentially serve as a new biomarker in cancer classification and detection.","PeriodicalId":228,"journal":{"name":"Small","volume":"214 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202403242","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular biomechanics plays a critical role in cancer metastasis and tumor progression. Existing studies on cancer cell biomechanics are mostly conducted in flat 2D conditions, where cells’ behavior can differ considerably from those in 3D physiological environments. Despite great advances in developing 3D in vitro models, probing cellular elasticity in 3D conditions remains a major challenge for existing technologies. In this work, optical Brillouin microscopy is utilized to longitudinally acquire mechanical images of growing cancerous spheroids over the period of 8 days. The dense mechanical mapping from Brillouin microscopy enables us to extract spatially resolved and temporally evolving mechanical features that were previously inaccessible. Using an established machine learning algorithm, it is demonstrated that incorporating these extracted mechanical features significantly improves the classification accuracy of cancer cells, from 74% to 95%. Building on this finding, a deep learning pipeline capable of accurately differentiating cancerous spheroids from normal ones solely using Brillouin images have been developed, suggesting the mechanical features of cancer cells can potentially serve as a new biomarker in cancer classification and detection.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.