Comparative study on the physicochemical characteristics of lignin via sequential solvent fractionation of ethanol and Kraft lignin derived from poplar and their applications
{"title":"Comparative study on the physicochemical characteristics of lignin via sequential solvent fractionation of ethanol and Kraft lignin derived from poplar and their applications","authors":"Changgeng Li, Zhongshan Wang, Minjie Hou, Xinyu Cao, Wenchao Jia, Lingzhi Huang, Lu Wu, Bing Wang, Xueru Sheng, Yanzhu Guo, Haiqiang Shi","doi":"10.1016/j.indcrop.2024.120071","DOIUrl":null,"url":null,"abstract":"The challenges in high value-added utilization of lignin own to its wide molecular weight distribution and complex physicochemical properties associated with it. How to narrow the molecular weight of lignin and elucidate the differences in physiochemical properties related to molecular weight of lignins is of crucial importance for lignin conversion processing. In this study, lab-made Kraft and ethanol lignins were fractionated into several narrower molecular weight distribution components through a designed solvent system. The yield, molecular weight distribution, structural characterization and their physicochemical properties of each fractionated lignin were analyzed comparatively. The results indicated that the yield of ethanol lignin is higher (8.44 %) than that of Kraft lignin (5.26 %). Kraft lignin shows lower molecular weight (Mw=2480 g/mol), higher hydroxyl content (4.29 mmol/g), and lower content of β-<em>O</em>-4 and β-5 bonds compared to ethanol lignin (Mw=3682 g/mol, 2.10 mmol/g). Meanwhile, the phenolic hydroxyl content in both ethanol and Kraft lignins increased with the decrease of molecular weight. Furthermore, ethanol lignin demonstrated higher antioxidant activity and much higher (65times) tensile strength of lignin-based polyurethane elastomer than that of Kraft lignin-based polyurethane elastomer.","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"25 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.indcrop.2024.120071","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The challenges in high value-added utilization of lignin own to its wide molecular weight distribution and complex physicochemical properties associated with it. How to narrow the molecular weight of lignin and elucidate the differences in physiochemical properties related to molecular weight of lignins is of crucial importance for lignin conversion processing. In this study, lab-made Kraft and ethanol lignins were fractionated into several narrower molecular weight distribution components through a designed solvent system. The yield, molecular weight distribution, structural characterization and their physicochemical properties of each fractionated lignin were analyzed comparatively. The results indicated that the yield of ethanol lignin is higher (8.44 %) than that of Kraft lignin (5.26 %). Kraft lignin shows lower molecular weight (Mw=2480 g/mol), higher hydroxyl content (4.29 mmol/g), and lower content of β-O-4 and β-5 bonds compared to ethanol lignin (Mw=3682 g/mol, 2.10 mmol/g). Meanwhile, the phenolic hydroxyl content in both ethanol and Kraft lignins increased with the decrease of molecular weight. Furthermore, ethanol lignin demonstrated higher antioxidant activity and much higher (65times) tensile strength of lignin-based polyurethane elastomer than that of Kraft lignin-based polyurethane elastomer.
期刊介绍:
Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.