Wei Pan, Chao Song, Li Li, Lina Xu, Peiying Zhang, Juqun Xi, Lei Fan, Jie Han, Rong Guo
{"title":"Hofmeister effect enhanced SiO<sub>2</sub>/gelatin-based hydrophobically associated hydrogels and their lubricating properties.","authors":"Wei Pan, Chao Song, Li Li, Lina Xu, Peiying Zhang, Juqun Xi, Lei Fan, Jie Han, Rong Guo","doi":"10.1016/j.ijbiomac.2024.137801","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, hydrogel materials with suitable energy dissipation mechanisms and excellent mechanical properties have attracted much attention in tissue engineering due to their ability to mimic the natural cartilage structure. However, in cartilage tissue's regeneration and repair process, hydrogel materials should also possess satisfactory lubrication properties and biocompatibility. Therefore, preparing biocompatible low friction, high toughness hydrogels remain a challenge. In this paper, a new strategy is proposed to use gelatin, acrylamide (AM), lauryl methacrylate (LMA) and SiO<sub>2</sub> to construct hydrophobically associated hydrogels, where gelatin was used as an emulsifier and SiO<sub>2</sub> was used to a nano-enhanced filler. Then the Hofmeister effect enhanced SiO<sub>2</sub>/gelatin-based hydrophobically associated hydrogels were prepared by one-step immersion in ammonium sulfate solution. The results showed that the strong \"salting out\" effect of ammonium sulfate solution on gelatin led to further enhancement of the hydrophobic interactions between gelatin molecular chains, which significantly improved the mechanical properties and lubrication ability of the hydrogels. Furthermore, Calcein AM-PI fluorescent staining and haemolysis assays showed that the hydrogel had low cytotoxicity and good haemocompatibility, and ELISA and scratch assays confirmed the positive regulatory effect of the hydrogel on normal cell growth. The Hofmeister effect-enhanced SiO<sub>2</sub>/gelatin-based hydrophobically associated hydrogels have potential applications in articular cartilage repair.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137801"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137801","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, hydrogel materials with suitable energy dissipation mechanisms and excellent mechanical properties have attracted much attention in tissue engineering due to their ability to mimic the natural cartilage structure. However, in cartilage tissue's regeneration and repair process, hydrogel materials should also possess satisfactory lubrication properties and biocompatibility. Therefore, preparing biocompatible low friction, high toughness hydrogels remain a challenge. In this paper, a new strategy is proposed to use gelatin, acrylamide (AM), lauryl methacrylate (LMA) and SiO2 to construct hydrophobically associated hydrogels, where gelatin was used as an emulsifier and SiO2 was used to a nano-enhanced filler. Then the Hofmeister effect enhanced SiO2/gelatin-based hydrophobically associated hydrogels were prepared by one-step immersion in ammonium sulfate solution. The results showed that the strong "salting out" effect of ammonium sulfate solution on gelatin led to further enhancement of the hydrophobic interactions between gelatin molecular chains, which significantly improved the mechanical properties and lubrication ability of the hydrogels. Furthermore, Calcein AM-PI fluorescent staining and haemolysis assays showed that the hydrogel had low cytotoxicity and good haemocompatibility, and ELISA and scratch assays confirmed the positive regulatory effect of the hydrogel on normal cell growth. The Hofmeister effect-enhanced SiO2/gelatin-based hydrophobically associated hydrogels have potential applications in articular cartilage repair.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.